-
Exploring the Prognostic Significance and Immunotherapeutic Potential of Single-Cell Sequencing-Identified Long Noncoding RNA (LncRNA) in Patients With Non-small Cell Lung Cancer.
Chen L
,Wang L
,Xiong Z
,Zhu X
,Chen L
... -
《Cureus》
-
Prognostic model and immunotherapy prediction based on molecular chaperone-related lncRNAs in lung adenocarcinoma.
Introduction: Molecular chaperones and long non-coding RNAs (lncRNAs) have been confirmed to be closely related to the occurrence and development of tumors, especially lung cancer. Our study aimed to construct a kind of molecular chaperone-related long non-coding RNAs (MCRLncs) marker to accurately predict the prognosis of lung adenocarcinoma (LUAD) patients and find new immunotherapy targets. Methods: In this study, we acquired molecular chaperone genes from two databases, Genecards and molecular signatures database (MsigDB). And then, we downloaded transcriptome data, clinical data, and mutation information of LUAD patients through the Cancer Genome Atlas (TCGA). MCRLncs were determined by Spearman correlation analysis. We used univariate, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis to construct risk models. Kaplan-meier (KM) analysis was used to understand the difference in survival between high and low-risk groups. Nomogram, calibration curve, concordance index (C-index) curve, and receiver operating characteristic (ROC) curve were used to evaluate the accuracy of the risk model prediction. In addition, we used gene ontology (GO) enrichment analysis and kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses to explore the potential biological functions of MCRLncs. Immune microenvironmental landscapes were constructed by using single-sample gene set enrichment analysis (ssGSEA), tumor immune dysfunction and exclusion (TIDE) algorithm, "pRRophetic" R package, and "IMvigor210" dataset. The stem cell index based on mRNAsi expression was used to further evaluate the patient's prognosis. Results: Sixteen MCRLncs were identified as independent prognostic indicators in patients with LUAD. Patients in the high-risk group had significantly worse overall survival (OS). ROC curve suggested that the prognostic features of MCRLncs had a good predictive ability for OS. Immune system activation was more pronounced in the high-risk group. Prognostic features of the high-risk group were strongly associated with exclusion and cancer-associated fibroblasts (CAF). According to this prognostic model, a total of 15 potential chemotherapeutic agents were screened for the treatment of LUAD. Immunotherapy analysis showed that the selected chemotherapeutic drugs had potential application value. Stem cell index mRNAsi correlates with prognosis in patients with LUAD. Conclusion: Our study established a kind of novel MCRLncs marker that can effectively predict OS in LUAD patients and provided a new model for the application of immunotherapy in clinical practice.
Xu Y
,Tao T
,Li S
,Tan S
,Liu H
,Zhu X
... -
《Frontiers in Genetics》
-
Cuproptosis-related lncRNA scoring system to predict the clinical outcome and immune landscape in pancreatic adenocarcinoma.
Cuproptosis is a recently discovered novel programmed cell death pathway that differs from traditional programmed cell death and has an important role in cancer and immune regulation. Long noncoding RNA (lncRNA) is considered new potential prognostic biomarkers in pancreatic adenocarcinoma (PAAD). However, the prognostic role and immune landscape of cuproptosis-related lncRNA in PAAD remain unclear. The transcriptome and clinical data of PAAD were obtained from The Cancer Genome Atlas (TCGA) database. Cuproptosis-related lncRNA was identified using Pearson correlation analysis. The optimal lncRNA was screened by Cox and the Least Absolute Shrinkage and Selection Operator (LASSO) regression mode, and for the construction of risk scoring system. PAAD patients were divided into high- and low-risk groups according to the risk score. Clinicopathological parameter correlation analysis, univariate and multivariate Cox regression, time-dependent receiver operating characteristic (ROC) curves, and nomogram were performed to evaluate the model. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to explore differences in biological function between different risk groups. Single-sample gene set enrichment analysis (ssGSEA) and Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) algorithm were used to analyze the differences in tumor immune microenvironment (TIME) in different risk groups of PAAD. Additionally, the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm was used to predict immunotherapy response and identify potential immune beneficiaries. Immune checkpoints and tumor mutation burden (TMB) were also systematically analyzed. Finally, drug sensitivity analysis was used to explore the reactivity of different drugs in high- and low-risk groups to provide a reference for the selection of precise therapeutic drugs. Six cuproptosis-related lncRNAs (AL117335.1, AC044849.1, AL358944.1, ZNF236-DT, Z97832.2, and CASC8) were used to construct risk model. Survival analysis showed that overall survival and progression-free survival in the low-risk group were better than those in the high-risk group, and it is suitable for PAAD patients with different clinical characteristics. Univariate and multifactorial Cox regression analysis showed that risk score was an independent prognostic factor in PAAD patients. ROC analysis showed that the AUC values of the risk score in 1 year, 3 years and 5 years were 0.707,0.762 and 0.880, respectively. Nomogram showed that the total points of PAAD patients at 1 year, 3 years, and 5 years were 0.914,0.648, and 0.543. GO and KEGG analyses indicated that the differential genes in the high- and low-risk groups were associated with tumor proliferation and metastasis and immune regulatory pathway. Immune correlation analysis showed that the amount of pro-inflammatory cells, including CD8+ T cells, was significantly higher in the low-risk group than in the high-risk group, and the expression of immune checkpoint genes, including PD-1 and CTLA-4, was increased in the low-risk group. TIDE analysis suggests that patients in the low-risk group may benefit from immunotherapy. Finally, there was significant variability in multiple chemotherapeutic and targeted drugs across the risk groups, which informs our clinical drug selection. Our cuproptosis-related lncRNA scoring system (CRLss) could predict the clinical outcome and immune landscape of PAAD patients, identify the potential beneficiaries of immunotherapy, and provide a reference for precise therapeutic drug selection.
Huang Y
,Gong P
,Su L
,Zhang M
... -
《Scientific Reports》
-
Identification of a novel defined inflammation-related long noncoding RNA signature contributes to predicting prognosis and distinction between the cold and hot tumors in bladder cancer.
Bladder cancer (BLCA) is one of the most frequently diagnosed urological malignancies and is the 4th most common cancer in men worldwide. Molecular targets expressed in bladder cancer (BLCA) are usually used for developing targeted drug treatments. However, poor prognosis and poor immunotherapy efficacy remain major challenges for BLCA. Numerous studies have shown that long non-coding RNAs (LncRNAs) play an important role in the development of cancer. However, the role of lncRNAs related to inflammation in BLCA and their prognostic value remain unclear. Therefore, this study is aimed to explore new potential biomarkers that can predict cancer prognosis.
We downloaded BLCA-related RNA sequencing data from The Cancer Genome Atlas (TCGA) and searched for inflammation-related prognostic long non-coding RNAs (lncRNAs) by univariate Cox (uniCox) regression and co-expression analysis. We used the least absolute shrinkage and selection operator (LASSO) analysis to construct an inflammation-related lncRNA prognosis risk model. Samples were divided into high-risk score (HRS) group and low-risk score (LRS) group based on the median value of risk scores. The independent variable factors were identified by univariate Cox (uni-Cox) and multivariate Cox (multi-Cox) regression analyses, and receiver operating characteristic (ROC) curves were used to compare the role of different factors in predicting outcomes. Nomogram and Calibration Plot were generated by the R package rms to analyze whether the prediction results are correct and show good consistency. Correlation coefficients were calculated by Pearson analysis. The Kaplan-Meier method was used to assess the prognostic value. The expression of 7 lncRNAs related with inflammation was also confirmed by qRT-PCR in BLCA cell lines. Kyoto Encyclopedia of Gene and Genome (KEGG) pathways that were significantly enriched (P < 0.05) in each risk group were identified by the GSEA software. The R package pRRophetic was used to predict the IC50 of common chemotherapeutic agents. TIMER, XCELL, QUANTISEQ, MCPCOUNTER, EPIC and CIBERSORT were applied to quantify the relative proportions of infiltrating immune cells. We also used package ggpubr to evaluate TME scores and immune checkpoint activation in LRS and HRS populations. R package GSEABase was used to analyze the activity of immune cells or immune function. Different clusters of principal component analysis (PCA), t-distribution random neighborhood embedding (t-SNE), and Kaplan-Meier survival were analyzed using R package Rtsne's. The R package ConsensesClusterPlus was used to class the inflammation-related lncRNAs.
In this study, a model containing 7 inflammation-related lncRNAs was constructed. The calibration plot of the model was consistent with the prognosis prediction outcomes. The 1-, 3-, and 5-year ROC curve (AUC) were 0.699, 0.689, and 0.699, respectively. High-risk patients were enriched in lncRNAs related with tumor invasion and immunity, and had higher levels of immune cell infiltration and immune checkpoint activation. Hot tumors and cold tumors were effectively distinguished by clusters 2 and 3 and cluster 1, respectively, which indicated that hot tumors are more susceptible to immunotherapy.
Our study showed that inflammation-related LncRNAs are closely related with BLCA, and inflammation-related lncRNA can accurately predict patient prognosis and effectively differentiate between hot and cold tumors, thus improving individualized immunotherapy for BLCA patients. Therefore, this study provides an effective predictive model and a new therapeutic target for the prognosis and clinical treatment of BLCA, thus facilitating the development of individualized tumor therapy.
Xiong X
,Chen C
,Li X
,Yang J
,Zhang W
,Wang X
,Zhang H
,Peng M
,Li L
,Luo P
... -
《Frontiers in Oncology》
-
Immunological Value of Prognostic Signature Based on Cancer Stem Cell Characteristics in Hepatocellular Carcinoma.
Background: Liver cancer stem cells, characterized by self-renewal and initiating cancer cells, were decisive drivers of progression and therapeutic resistance in hepatocellular carcinoma (HCC). However, a comprehensive understanding of HCC stemness has not been identified. Methods: RNA sequencing information, corresponding clinical annotation, and mutation data of HCC were downloaded from The Cancer Genome Atlas-LIHC project. Two stemness indices, mRNA expression-based stemness index (mRNAsi) and epigenetically regulated-mRNAsi, were used to comprehensively analyze HCC stemness. Estimation of Stromal and Immune Cells in Malignant Tumors using Expression Data and single-sample gene-set enrichment analysis algorithm were performed to characterize the context of tumor immune microenvironment (TIME). Next, differentially expressed gene (DEG) analysis and weighted gene co-expression network analysis (WGCNA) were employed to identify significant mRNAsi-related modules with hub genes. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment pathways were analyzed to functionally annotate these key genes. The least absolute shrinkage and selection operator (LASSO) Cox regression analysis was performed to establish a prognostic signature. Kaplan-Meier survival curves and receiver operating characteristic (ROC) analysis were applied for prognostic value validation. Seven algorithms (XCELL, TIMER, QUANTISEQ, MCPcounter, EPIC, CIBERSORT, and CIBERSORT-ABS) were utilized to draw the landscape of TIME. Finally, the mutation data were analyzed by employing "maftools" package. Results: mRNAsi was significantly elevated in HCC samples. mRNAsi escalated as tumor grade increased, with poor prognosis presenting the higher stemness index. The stemness-related (greenyellow) modules with 175 hub genes were screened based on DEGs and WGCNA. A prognostic signature was established using LASSO analysis of prognostic hub genes to classify samples into two risk subgroups, which exhibited good prognostic performance. Additionally, prognostic risk-clinical nomogram was drawn to estimate risk quantitatively. Moreover, risk score was significantly associated with contexture of TIME and immunotherapeutic targets. Finally, potential interaction between risk score with tumor mutation burden (TMB) was elucidated. Conclusion: This work comprehensively elucidated that stemness characteristics served as a crucial player in clinical outcome, complexity of TIME, and immunotherapeutic prediction from both mRNAsi and mRNA level. Quantitative identification of stemness characteristics in individual tumor will contribute into predicting clinical outcome, mapping landscape of TIME further optimizing precision immunotherapy.
Xu Q
,Xu H
,Chen S
,Huang W
... -
《Frontiers in Cell and Developmental Biology》