Predictions based on inflammatory cytokine profiling of Egyptian COVID-19 with 2 potential therapeutic effects of certain marine-derived compounds.

来自 PUBMED

作者:

Elnosary MEShreadah MAAshour MLNabil-Adam A

展开

摘要:

A worldwide coronavirus pandemic has affected many healthcare systems in 2019 (COVID-19). Following viral activation, cytokines and chemokines are released, causing inflammation and tissue death, particularly in the lungs, resulting in severe COVID-19 symptoms such as pneumonia and ARDS. COVID-19 induces the release of several chemokines and cytokines in different organs, such as the cardiovascular system and lungs. COVID-19 and its more severe effects, such as an elevated risk of death, are more common in patients with metabolic syndrome and the elderly. Cytokine storm and COVID-19 severity may be mitigated by immunomodulation targeting NF-κB activation in conjunction with TNF- α -inhibition. In severe cases of COVID-19, inhibiting the NF-κB/TNF- α, the pathway may be employed as a therapeutic option. The study will elaborate on the Egyptian pattern for COVID-19 patients in the first part of our study. An Egyptian patient with COVID-19 inflammatory profiling will be discussed in the second part of this article using approved marine drugs selected to inhabit the significant inflammatory signals. A biomarker profiling study is currently being performed on Egyptian patients with SARS-COV-2. According to the severity of the infection, participants were divided into four groups. The First Group was non-infected with SARS-CoV-2 (Control, n = 16), the Second Group was non-intensive care patients (non-ICU, n = 16), the Third Group was intensive care patients (ICU, n = 16), and the Fourth Group was ICU with endotracheal intubation (ICU + EI, n = 16). To investigate COVID-19 inflammatory biomarkers for Egyptian patients, several inflammatory, oxidative, antioxidant, and anti-inflammatory biomarkers were measured. The following are examples of blood tests: CRP, Ferritin, D-dimer, TNF-α, IL-8, IL-6., IL-Ib, CD8, NF-κB, MDA, and total antioxidants. The results of the current study revealed many logical findings, such as the elevation of CRP, Ferritin, D-dimer, TNF- α, CD8, IL-6, IL-, NF-κB, and MDA. Where a significant increase showed in ICU group results (23.05 ± 0.30, 2.35 ± 0.86, 433.4 ± 159.3, 26.67 ± 3.51, 7.52 ± 1.48, 7.49 ± 1.04, 5.76 ± 1.31, 7.41 ± 0.73) respectively, and also ICU group results (54.75 ± 3.44, 0.65 ± 0.13, 460.2 ± 121.42, 27.43 ± 2.52, 8.63 ± 2.68, 10.65 ± 2.75, 5.93 ± 1.4, 10.64 ± 0.86) respectively, as well as ICU + EI group results (117.63 ± 11.89, 1.22 ± 0.65, 918.8 ± 159.27, 26.68 ± 2.00, 6.68 ± 1.08, 11.68 ± 6.16, 6.23 ± 0.07, 22.41 ± 1.39),respectively.The elevation in laboratory biomarkers of cytokines storm in three infected groups with remarkable increases in the ICU + EI group was due to the elevation of oxidative stress and inflammatory storm molecules, which lead to highly inflammatory responses, specifically in severe patients of COVID-19. Another approach to be used in the current study is investigating new computational drug compounds for SARS-COV-2 protective agents from the marine environment. The results revealed that (Imatinib and Indinavir) had the highest affinity toward Inflammatory molecules and COVID-19 proteins (PDB ID: -7CZ4 and 7KJR), which may be used in the future as possible COVID-19 drug candidates. The investigated inflammatory biomarkers in Egyptian COVID-19 patients showed a strong correlation between IL6, TNF-α, NF-κB, CRB, DHL, and ferritin as COVID-19 biomarkers and determined the severity of the infection. Also, the oxidative /antioxidant showed good biomarkers for infection recovery and progression of the patients.

收起

展开

DOI:

10.1016/j.intimp.2023.111072

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(396)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读