Bioinformatics strategies to identify differences in molecular biomarkers for ischemic stroke and myocardial infarction.

来自 PUBMED

作者:

Wang MGao YChen HShen YCheng JWang G

展开

摘要:

Ischemic strokes (ISs) are commonly treated by intravenous thrombolysis using a recombinant tissue plasminogen activator; however, successful treatment can only occur within 3 hours after the stroke. Therefore, it is crucial to determine the causes and underlying molecular mechanisms, identify molecular biomarkers for early diagnosis, and develop precise preventive treatments for strokes. We aimed to clarify the differences in gene expression, molecular mechanisms, and drug prediction approaches between IS and myocardial infarction (MI) using comprehensive bioinformatics analysis. The pathogenesis of these diseases was explored to provide directions for future clinical research. The IS (GSE58294 and GSE16561) and MI (GSE60993 and GSE141512) datasets were downloaded from the Gene Expression Omnibus database. IS and MI transcriptome data were analyzed using bioinformatics methods, and the differentially expressed genes (DEGs) were screened. A protein-protein interaction network was constructed using the STRING database and visualized using Cytoscape, and the candidate genes with high confidence scores were identified using Degree, MCC, EPC, and DMNC in the cytoHubba plug-in. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the DEGs were performed using the database annotation, visualization, and integrated discovery database. Network Analyst 3.0 was used to construct transcription factor (TF) - gene and microRNA (miRNA) - gene regulatory networks of the identified candidate genes. The DrugBank 5.0 database was used to identify gene-drug interactions. After bioinformatics analysis of IS and MI microarray data, 115 and 44 DEGS were obtained in IS and MI, respectively. Moreover, 8 hub genes, 2 miRNAs, and 3 TFs for IS and 8 hub genes, 13 miRNAs, and 2 TFs for MI were screened. The molecular pathology between IS and MI presented differences in terms of GO and KEGG enrichment pathways, TFs, miRNAs, and drugs. These findings provide possible directions for the diagnosis of IS and MI in the future.

收起

展开

DOI:

10.1097/MD.0000000000035919

被引量:

2

年份:

2023

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(156)

参考文献(0)

引证文献(2)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读