Complete plastid genome structure of 13 Asian Justicia (Acanthaceae) species: comparative genomics and phylogenetic analyses.
Justicia L. is the largest genus in Acanthaceae Juss. and widely distributed in tropical and subtropical regions of the world. Previous phylogenetic studies have proposed a general phylogenetic framework for Justicia based on several molecular markers. However, their studies were mainly focused on resolution of phylogenetic issues of Justicia in Africa, Australia and South America due to limited sampling from Asia. Additionally, although Justicia plants are of high medical and ornamental values, little research on its genetics was reported. Therefore, to improve the understanding of its genomic structure and relationships among Asian Justicia plants, we sequenced complete chloroplast (cp.) genomes of 12 Asian plants and combined with the previously published cp. genome of Justicia leptostachya Hemsl. for further comparative genomics and phylogenetic analyses.
All the cp. genomes exhibit a typical quadripartite structure without genomic rearrangement and gene loss. Their sizes range from 148,374 to 151,739 bp, including a large single copy (LSC, 81,434-83,676 bp), a small single copy (SSC, 16,833-17,507 bp) and two inverted repeats (IR, 24,947-25,549 bp). GC contents range from 38.1 to 38.4%. All the plastomes contain 114 genes, including 80 protein-coding genes, 30 tRNAs and 4 rRNAs. IR variation and repetitive sequences analyses both indicated that Justicia grossa C. B. Clarke is different from other Justicia species because its lengths of ndhF and ycf1 in IRs are shorter than others and it is richest in SSRs and dispersed repeats. The ycf1 gene was identified as the candidate DNA barcode for the genus Justicia. Our phylogenetic results showed that Justicia is a polyphyletic group, which is consistent with previous studies. Among them, J. grossa belongs to subtribe Tetramerinae of tribe Justicieae while the other Justicia members belong to subtribe Justiciinae. Therefore, based on morphological and molecular evidence, J. grossa should be undoubtedly recognized as a new genus. Interestingly, the evolutionary history of Justicia was discovered to be congruent with the morphology evolution.
Our study not only elucidates basic features of Justicia whole plastomes, but also sheds light on interspecific relationships of Asian Justicia plants for the first time.
Niu Z
,Lin Z
,Tong Y
,Chen X
,Deng Y
... -
《BMC PLANT BIOLOGY》
Thirteen complete chloroplast genomes of the costaceae family: insights into genome structure, selective pressure and phylogenetic relationships.
Costaceae, commonly known as the spiral ginger family, consists of approximately 120 species distributed in the tropical regions of South America, Africa, and Southeast Asia, of which some species have important ornamental, medicinal and ecological values. Previous studies on the phylogenetic and taxonomic of Costaceae by using nuclear internal transcribed spacer (ITS) and chloroplast genome fragments data had low resolutions. Additionally, the structures, variations and molecular evolution of complete chloroplast genomes in Costaceae still remain unclear. Herein, a total of 13 complete chloroplast genomes of Costaceae including 8 newly sequenced and 5 from the NCBI GenBank database, representing all three distribution regions of this family, were comprehensively analyzed for comparative genomics and phylogenetic relationships.
The 13 complete chloroplast genomes of Costaceae possessed typical quadripartite structures with lengths from 166,360 to 168,966 bp, comprising a large single copy (LSC, 90,802 - 92,189 bp), a small single copy (SSC, 18,363 - 20,124 bp) and a pair of inverted repeats (IRs, 27,982 - 29,203 bp). These genomes coded 111 - 113 different genes, including 79 protein-coding genes, 4 rRNA genes and 28 - 30 tRNAs genes. The gene orders, gene contents, amino acid frequencies and codon usage within Costaceae were highly conservative, but several variations in intron loss, long repeats, simple sequence repeats (SSRs) and gene expansion on the IR/SC boundaries were also found among these 13 genomes. Comparative genomics within Costaceae identified five highly divergent regions including ndhF, ycf1-D2, ccsA-ndhD, rps15-ycf1-D2 and rpl16-exon2-rpl16-exon1. Five combined DNA regions (ycf1-D2 + ndhF, ccsA-ndhD + rps15-ycf1-D2, rps15-ycf1-D2 + rpl16-exon2-rpl16-exon1, ccsA-ndhD + rpl16-exon2-rpl16-exon1, and ccsA-ndhD + rps15-ycf1-D2 + rpl16-exon2-rpl16-exon1) could be used as potential markers for future phylogenetic analyses and species identification in Costaceae. Positive selection was found in eight protein-coding genes, including cemA, clpP, ndhA, ndhF, petB, psbD, rps12 and ycf1. Maximum likelihood and Bayesian phylogenetic trees using chloroplast genome sequences consistently revealed identical tree topologies with high supports between species of Costaceae. Three clades were divided within Costaceae, including the Asian clade, Costus clade and South American clade. Tapeinochilos was a sister of Hellenia, and Parahellenia was a sister to the cluster of Tapeinochilos + Hellenia with strong support in the Asian clade. The results of molecular dating showed that the crown age of Costaceae was about 30.5 Mya (95% HPD: 14.9 - 49.3 Mya), and then started to diverge into the Costus clade and Asian clade around 23.8 Mya (95% HPD: 10.1 - 41.5 Mya). The Asian clade diverged into Hellenia and Parahellenia at approximately 10.7 Mya (95% HPD: 3.5 - 25.1 Mya).
The complete chloroplast genomes can resolve the phylogenetic relationships of Costaceae and provide new insights into genome structures, variations and evolution. The identified DNA divergent regions would be useful for species identification and phylogenetic inference in Costaceae.
Li DM
,Pan YG
,Liu HL
,Yu B
,Huang D
,Zhu GF
... -
《BMC GENOMICS》