Mapping the EORTC QLQ-C30 and QLQ H&N35 to the EQ-5D-5L and SF-6D for papillary thyroid carcinoma.

来自 PUBMED

作者:

Huang DZeng DTang YJiang LYang Q

展开

摘要:

Empirical evidence for the EORTC QLQ C30 scale in thyroid cancer mapping algorithms has not been found in China, which limits the cost-utility analysis of patients with papillary thyroid carcinoma (PTC) population. We developed mapping algorithms that use the EORTC QLQ-C30 and QLQ H&N35 to predict EQ-5D-5L and SF-6D health utility scores for PTC patients. Data from 1050 Chinese PTC patients who completed the EORTC QLQ-C30, QLQ H&N35, EQ-5D-5L and SF-6D instruments were collected. Direct mapping (OLS, Tobit, Betamix) and indirect mapping functions (Order Probit) were used to estimate algorithms. The goodness-of-fit of mapping performance was assessed by MAE, RMSE, AIC, BIC, AE, and ICC. A fivefold cross-validation and random sample validation approach were used to test the stability of the models. The mean EQ-5D-5L and SF-6D utility scores were 0.8704 and 0.6368, respectively. We recommend the Betamix model for the EQ-5D-5L (MAE = 0.0363, RMSE = 0.0505, AIC = -3458.73, BIC = -3096.91, AE > 0.05(%) = 48.38, AE > 0.1(%) = 8.67, ICC = 0.8288 for the full sample dataset) and the Betamix model for the SF-6D (MAE = 0.0328, RMSE = 0.0417, AIC = -2788.91, BIC = -2605.51, AE > 0.05(%) = 42.76, AE > 0.1(%) = 3.62, ICC = 0.8657 for the full sample dataset), with EORTC QLQ-C30 all items, QLQ H&N35 all items, age and gender as the predicted variables showing the best performance. In the absence of preference-based quality of life tools, the mapping algorithms reported here are effective alternative for predicting the health utility of PTC patients, contributing to the cost-utility analysis studies.

收起

展开

DOI:

10.1007/s11136-023-03540-9

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(129)

参考文献(44)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读