Realtime Diagnosis from Electrocardiogram Artificial Intelligence-Guided Screening for Atrial Fibrillation with Long Follow-Up (REGAL): Rationale and design of a pragmatic, decentralized, randomized controlled trial.

来自 PUBMED

作者:

Yao XAttia ZIBehnken EMHart MSInselman SAWeber KCLi FStricker NHStricker JLFriedman PANoseworthy PA

展开

摘要:

Atrial fibrillation (AF) is associated with increased risks of stroke and dementia. Early diagnosis and treatment could reduce the disease burden, but AF is often undiagnosed. An artificial intelligence (AI) algorithm has been shown to identify patients with previously unrecognized AF; however, monitoring these high-risk patients has been challenging. Consumer wearable devices could be an alternative to enable long-term follow-up. To test whether Apple Watch, used as a long-term monitoring device, can enable early diagnosis of AF in patients who were identified as having high risk based on AI-ECG. The Realtime diagnosis from Electrocardiogram (ECG) Artificial Intelligence (AI)-Guided Screening for Atrial Fibrillation (AF) with Long Follow-up (REGAL) study is a pragmatic trial that will accrue up to 2,000 older adults with a high likelihood of unrecognized AF determined by AI-ECG to reach our target of 1,420 completed participants. Participants will be 1:1 randomized to intervention or control and will be followed up for 2 years. Patients in the intervention arm will receive or use their existing Apple Watch and iPhone and record a 30-second ECG using the watch routinely or if an abnormal heart rate notification is prompted. The primary outcome is newly diagnosed AF. Secondary outcomes include changes in cognitive function, stroke, major bleeding, and all-cause mortality. The trial will utilize a pragmatic, digitally-enabled, decentralized design to allow patients to consent and receive follow-up remotely without traveling to the study sites. The REGAL trial will examine whether a consumer wearable device can serve as a long-term monitoring approach in older adults to detect AF and prevent cognitive function decline. If successful, the approach could have significant implications on how future clinical practice can leverage consumer devices for early diagnosis and disease prevention. GOV: : NCT05923359.

收起

展开

DOI:

10.1016/j.ahj.2023.10.005

被引量:

1

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(119)

参考文献(0)

引证文献(1)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读