Radiomics analysis based on single phase and different phase combinations of radiomics features from tri-phasic CT to distinguish renal oncocytoma from chromophobe renal cell carcinoma.

来自 PUBMED

作者:

Yang SJian YYang FLiu RZhang WWang JTan XWu JChen YZhou X

展开

摘要:

To investigate different radiomics models based on single phase and the different phase combinations of radiomics features from 3D tri-phasic CT to distinguish RO from chRCC. A total of 96 patients (30 RO and 66 chRCC) were enrolled in this study. Radiomics features were extracted from unenhanced phase (UP), corticomedullary phase (CMP), and nephrographic phase (NP) CT images. Feature selection was based on the least absolute shrinkage and selection operator regression (LASSO) method. The selected features were used to develop different radiomics models using logistic regression (LR) analysis, including model 1 (UP), model 2(CMP), model 3(NP), model 4(UP+CMP), model 5(UP+NP), model 6(CMP+NP), and model 7(UP+CMP+NP). The radiomics model demonstrating the highest discrimination performance was utilized to construct the combined model (model 8) with clinical factors. A nomogram based on the model 8 was established. To evaluate the diagnostic performance of the different models, the receiver operating characteristic (ROC) curve and decision curve analysis (DCA) were used. Delong's test was utilized to assess the statistical significance of the AUC improvement across the models. Among the seven radiomics models, model 7 exhibited the highest AUC of 0.84 (95% CI 0.69, 0.99), and model 7 demonstrated a significantly superior AUC compared to the other radiomics models (all P < 0.05). The AUC values of radiomics models based on two phases (model4, mode5, mode6) were greater than the models based on single phase (model1, mode2, mode3) (all P < 0.05). Model 3 illustrated the best performance of the three radiomics models based on single phase with an AUC of 0.76 (95% CI 0.57, 099). Model 6 illustrated the best performance of the three radiomics models based on two-phases combination with an AUC of 0.83 (0.66, 0.99). Model 8 achieved an AUC of 0.93 (95% CI 0.83, 1.00) which is higher than those all radiomics models. Radiomics models based on combination of radiomics features from UP, CMP, and NP can be a useful and promising technique to differentiate RO from chRCC. Moreover, the model combining clinical factors and radiomics features showed better classification performance to distinguish them.

收起

展开

DOI:

10.1007/s00261-023-04053-2

被引量:

2

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(124)

参考文献(23)

引证文献(2)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读