Artificial intelligence and its clinical application in Anesthesiology: a systematic review.
Application of artificial intelligence (AI) in medicine is quickly expanding. Despite the amount of evidence and promising results, a thorough overview of the current state of AI in clinical practice of anesthesiology is needed. Therefore, our study aims to systematically review the application of AI in this context.
A systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched Medline and Web of Science for articles published up to November 2022 using terms related with AI and clinical practice of anesthesiology. Articles that involved animals, editorials, reviews and sample size lower than 10 patients were excluded. Characteristics and accuracy measures from each study were extracted.
A total of 46 articles were included in this review. We have grouped them into 4 categories with regard to their clinical applicability: (1) Depth of Anesthesia Monitoring; (2) Image-guided techniques related to Anesthesia; (3) Prediction of events/risks related to Anesthesia; (4) Drug administration control. Each group was analyzed, and the main findings were summarized. Across all fields, the majority of AI methods tested showed superior performance results compared to traditional methods.
AI systems are being integrated into anesthesiology clinical practice, enhancing medical professionals' skills of decision-making, diagnostic accuracy, and therapeutic response.
Lopes S
,Rocha G
,Guimarães-Pereira L
《-》
Artificial Intelligence Techniques: Analysis, Application, and Outcome in Dentistry-A Systematic Review.
The objective of this systematic review was to investigate the quality and outcome of studies into artificial intelligence techniques, analysis, and effect in dentistry.
Using the MeSH keywords: artificial intelligence (AI), dentistry, AI in dentistry, neural networks and dentistry, machine learning, AI dental imaging, and AI treatment recommendations and dentistry. Two investigators performed an electronic search in 5 databases: PubMed/MEDLINE (National Library of Medicine), Scopus (Elsevier), ScienceDirect databases (Elsevier), Web of Science (Clarivate Analytics), and the Cochrane Collaboration (Wiley). The English language articles reporting on AI in different dental specialties were screened for eligibility. Thirty-two full-text articles were selected and systematically analyzed according to a predefined inclusion criterion. These articles were analyzed as per a specific research question, and the relevant data based on article general characteristics, study and control groups, assessment methods, outcomes, and quality assessment were extracted.
The initial search identified 175 articles related to AI in dentistry based on the title and abstracts. The full text of 38 articles was assessed for eligibility to exclude studies not fulfilling the inclusion criteria. Six articles not related to AI in dentistry were excluded. Thirty-two articles were included in the systematic review. It was revealed that AI provides accurate patient management, dental diagnosis, prediction, and decision making. Artificial intelligence appeared as a reliable modality to enhance future implications in the various fields of dentistry, i.e., diagnostic dentistry, patient management, head and neck cancer, restorative dentistry, prosthetic dental sciences, orthodontics, radiology, and periodontics.
The included studies describe that AI is a reliable tool to make dental care smooth, better, time-saving, and economical for practitioners. AI benefits them in fulfilling patient demand and expectations. The dentists can use AI to ensure quality treatment, better oral health care outcome, and achieve precision. AI can help to predict failures in clinical scenarios and depict reliable solutions. However, AI is increasing the scope of state-of-the-art models in dentistry but is still under development. Further studies are required to assess the clinical performance of AI techniques in dentistry.
Ahmed N
,Abbasi MS
,Zuberi F
,Qamar W
,Halim MSB
,Maqsood A
,Alam MK
... -
《-》
Artificial Intelligence in Head and Neck Cancer: A Systematic Review of Systematic Reviews.
Several studies have emphasized the potential of artificial intelligence (AI) and its subfields, such as machine learning (ML), as emerging and feasible approaches to optimize patient care in oncology. As a result, clinicians and decision-makers are faced with a plethora of reviews regarding the state of the art of applications of AI for head and neck cancer (HNC) management. This article provides an analysis of systematic reviews on the current status, and of the limitations of the application of AI/ML as adjunctive decision-making tools in HNC management.
Electronic databases (PubMed, Medline via Ovid, Scopus, and Web of Science) were searched from inception until November 30, 2022. The study selection, searching and screening processes, inclusion, and exclusion criteria followed the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. A risk of bias assessment was conducted using a tailored and modified version of the Assessment of Systematic Review (AMSTAR-2) tool and quality assessment using the Risk of Bias in Systematic Reviews (ROBIS) guidelines.
Of the 137 search hits retrieved, 17 fulfilled the inclusion criteria. This analysis of systematic reviews revealed that the application of AI/ML as a decision aid in HNC management can be thematized as follows: (1) detection of precancerous and cancerous lesions within histopathologic slides; (2) prediction of the histopathologic nature of a given lesion from various sources of medical imaging; (3) prognostication; (4) extraction of pathological findings from imaging; and (5) different applications in radiation oncology. In addition, the challenges in implementation of AI/ML models for clinical evaluations include the lack of standardized methodological guidelines for the collection of clinical images, development of these models, reporting of their performance, external validation procedures, and regulatory frameworks.
At present, there is a paucity of evidence to suggest the adoption of these models in clinical practice due to the aforementioned limitations. Therefore, this manuscript highlights the need for development of standardized guidelines to facilitate the adoption and implementation of these models in the daily clinical practice. In addition, adequately powered, prospective, randomized controlled trials are urgently needed to further assess the potential of AI/ML models in real-world clinical settings for the management of HNC.
Mäkitie AA
,Alabi RO
,Ng SP
,Takes RP
,Robbins KT
,Ronen O
,Shaha AR
,Bradley PJ
,Saba NF
,Nuyts S
,Triantafyllou A
,Piazza C
,Rinaldo A
,Ferlito A
... -
《-》