Study on the action mechanism of the Polygonum perfoliatum L. on non-alcoholic fatty liver disease, based on network pharmacology and experimental validation.

来自 PUBMED

作者:

Liu GYang LTang YLin JWang FShen JChang BKong X

展开

摘要:

Traditional Chinese medicine (TCM) holds that non-alcoholic fatty liver disease (NAFLD) belong to the category of "thoracic fullness". Polygonum perfoliatum L. (PPL), a Chinese medicinal herb with the effect of treating thoracic fullness, was recorded in the ancient Chinese medicine book "Supplements to Compendium of Materia Medica". It has been used since ancient times to treat NAFLD. However, the underlying mechanism and active components of PPL against NAFLD remains unclear. To identify the main active components and the anti-NAFLD mechanism of PPL. Network pharmacology, UPLC/QE-HFX analysis, and molecular docking were employed to determine the main bioactive compounds and key targets of PPL for the NAFLD treatment. This effect was further validated with administration of PPL (200 mg/kg and 400 mg/kg) to NAFLD model mice for 5 weeks. Systemic signs of obesity, biochemical parameters, and histological changes were characterized. Immunohistochemistry, western blot, and PCR analysis were conducted to elucidate the mechanistic pathways through which PPL exerts its effects. Network pharmacology revealed 77 crossover genes between the PPL and NAFLD. The kyoto encyclopedia of genes and genomes (KEGG) analysis show that PPL treat NAFLD mainly regulating glucose-lipid metabolism mediated by PI3K/AKT signal pathway. The Gene Ontology (GO) enrichment analysis show that PPL treat NAFLD mainly regulating inflammation mediated by cytokine-mediated signaling pathway. In accordance with the anticipated outcomes, administration of PPL in a dose-dependent manner effectively mitigated insulin resistance induced by a high-fat diet (HFD) by activating the PI3K/AKT signaling pathway. Histopathological evaluation corroborated the hepatoprotective effects of PPL against HFD-induced hepatic steatosis, as evidenced by the inhibition of de novo fatty acid synthesis and promotion of fatty acid β-oxidation (FAO). Further research showed that PPL blocked cytokine production by inhibiting the NF-κB pathway, thereby reducing immune cell infiltration. Furthermore, five flavonoids from PPL, including quercetin, baicalein, galangin, apigenin, and genistein were identified as key compounds based on ingredient-target-pathway network analysis. Molecular docking show that these active compounds have favorable binding interactions with AKT1, PIK3R1, and MAPK1, further confirming the impact of PPL on the PI3K/AKT pathway. Through the combination of network pharmacology prediction and experimental validation, this work determined that therapeutic effect of PPL on NAFLD, and such protective effect is mediated by activating PI3K/AKT-mediated glucolipid metabolism pathway and hepatic NF-κB-mediated cytokine signaling pathway.

收起

展开

DOI:

10.1016/j.jep.2023.117330

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(302)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读