TRAIL and Celastrol Combinational Treatment Suppresses Proliferation, Migration, and Invasion of Human Glioblastoma Cells via Targeting Wnt/β-catenin Signaling Pathway.
To investigate the mechanistic basis for the anti-proliferation and anti-invasion effect of tumor necrosis factor-related apoptosis-induced ligand (TRAIL) and celastrol combination treatment (TCCT) in glioblastoma cells.
Cell counting kit-8 was used to detect the effects of different concentrations of celastrol (0-16 µmol/L) and TRAIL (0-500 ng/mL) on the cell viability of glioblastoma cells. U87 cells were randomly divided into 4 groups, namely control, TRAIL (TRAIL 100 ng/mL), Cel (celastrol 0.5 µmol/L) and TCCT (TRAIL 100 ng/mL+ celastrol 0.5 µmol/L). Cell proliferation, migration, and invasion were detected by colony formation, wound healing, and Transwell assays, respectively. Quantitative reverse transcription polymerase chain reaction and Western blotting were performed to assess the levels of epithelial-mesenchymal transition (EMT) markers (zona occludens, N-cadherin, vimentin, zinc finger E-box-binding homeobox, Slug, and β-catenin). Wnt pathway was activated by lithium chloride (LiCl, 20 mol/L) and the mechanism for action of TCCT was explored.
Celastrol and TRAIL synergistically inhibited the proliferation, migration, invasion, and EMT of U87 cells (P<0.01). TCCT up-regulated the expression of GSK-3β and down-regulated the expression of β-catenin and its associated proteins (P<0.05 or P<0.01), including c-Myc, Cyclin-D1, and matrix metalloproteinase (MMP)-2. In addition, LiCl, an activator of the Wnt signaling pathway, restored the inhibitory effects of TCCT on the expression of β-catenin and its downstream genes, as well as the migration and invasion of glioblastoma cells (P<0.05 or P<0.01).
Celastrol and TRAIL can synergistically suppress glioblastoma cell migration, invasion, and EMT, potentially through inhibition of Wnt/β-catenin pathway. This underlies a novel mechanism of action for TCCT as an effective therapy for glioblastoma.
Qin JJ
,Niu MD
,Cha Z
,Geng QH
,Li YL
,Ren CG
,Molloy DP
,Yu HR
... -
《-》
A novel O(2)- (2,4-dinitrophenyl) diazeniumdiolate inhibits hepatocellular carcinoma migration, invasion, and EMT through the Wnt/β-catenin pathway.
Targeted Wnt/β-catenin pathway is considered to be a promising therapy for cancer metastasis. The novel O2 -(2,4-dinitrophenyl) diazeniumdiolate (JS-K) plays a potent inhibitory role in the proliferation of cancers. In this study, HepG2 and SMMC7721 were used to clarify the efficacy of JS-K inhibition of HCC metastasis. JS-K significantly inhibited cell motility through a wound-healing assay and restrained cell migration and invasion at noncytotoxic concentrations. However, the inhibitory effects of migration and invasion were abolished after the addition of NO scavenger, Carboxy-PTIO. In addition, JS-K inhibited the Wnt/β-catenin pathway by a decrease of p-GSK-3β at Ser9, cytosolic β-catenin, and nuclear β-catenin accumulation whereas an increase of p-β-catenin. Furthermore, the transcription regulators c-Myc, survivin, and Cyclin D1 were down-regulated after treating with JS-K. The inhibitory of the Wnt/β-catenin pathway was reversed after the addition of Carboxy-PTIO or LiCl. Meanwhile, JS-K also inhibited the epithelial-mesenchymal transition (EMT)-mediated cell migration and invasion. The characteristics of the inhibition were reflected by the upregulation of E-cadherin whereas the downregulation of Vimentin, Snail, and Slug. Taking together, these results demonstrated that JS-K inhibited HepG2 and SMMC7721 cells migration and invasion by reversing EMT via the Wnt/β-catenin pathway.
Xing Y
,Hu Y
,Zou H
,Xie H
,Jiang T
,Liu L
... -
《-》
Alantolactone Inhibits Melanoma Cell Culture Viability and Migration and Promotes Apoptosis by Inhibiting Wnt/β-Catenin Signaling.
Melanoma is a highly invasive and metastatic malignant tumor originating from melanocytes and is associated with a poor prognosis. Surgical resection and chemotherapy are currently the main therapeutic options for malignant melanoma; however, their efficacy is poor, highlighting the need for the development of new, safe, and effective drugs for the treatment of this cancer.
To investigate the effects of alantolactone (ALT) on the proliferative, migratory, invasive, and apoptotic ability of malignant melanoma cells and explore its potential anticancer mechanism.
Melanoma cells (A375 and B16) were treated with different concentrations (4, 6, 8, and 10 μmol/L) of ALT, with DMSO and no treatment serving as controls. The effects of the different concentrations of the drug on cell proliferation were assessed by crystal violet staining and CCK-8 assay. The effects on cell migration and invasion were detected by wound healing and Transwell assays, respectively. Flow cytometry was used to evaluate the effects of the drug on apoptosis and the cell cycle. ALT target genes in melanoma were screened using network pharmacology. Western blotting was used to measure the expression levels of the proliferation-related protein PCNA; the apoptosisrelated proteins Bax, Bcl-2, and caspase-3; the invasion and metastasis-related proteins MMP-2, MMP-7, MMP-9, vimentin, E-cadherin, and N-cadherin; and the canonical Wnt signaling pathway-related proteins β-catenin, c-Myc, and p-GSK3β. In addition, an l model of melanoma was established by the subcutaneous injection of A375 melanoma cells into nude mice, following which the effects of ALT treatment on malignant melanoma were determined in vivo.
Compared with the controls, the proliferative, migratory, and invasive capacity of ALT-treated melanoma cells was significantly inhibited, whereas apoptosis was enhanced (P<0.01), showing effects that were exerted in a dose-dependent manner. The expression levels of the pro-apoptotic proteins Bax and caspase-3, as well as those of the interstitial marker E-cadherin, were upregulated in melanoma cells irrespective of the ALT concentration (P<0.05). In contrast, the expression levels of the anti-apoptotic protein Bcl-2, the proliferation-related protein PCNA, and the invasion and metastasis-related proteins MMP-2, MMP-7, MMP-9, N-cadherin, and vimentin were downregulated (P<0.05). The network pharmacology results indicated that GSK3β may be a key ALT target in melanoma. Meanwhile, western blotting assays showed that ALT treatment markedly suppressed the expression of β-catenin as well as that of its downstream effector c-Myc, and could also inhibit GSK3β phosphorylation.
ALT can effectively inhibit the culture viability, migration, and invasion of A375 and B16 melanoma cells while also promoting their apoptosis. ALT may exert its anti-melanoma effects by inhibiting the Wnt/β-catenin signaling pathway. Combined, our data indicate that ALT has the potential as an effective and safe therapeutic drug for the treatment of melanoma.
Zhang L
,Chen J
,Chen Y
,Zou D
,Pu Y
,Wei M
,Huang Y
,Li Y
,Huang Q
,Chen J
... -
《-》