Incidence of diabetes following COVID-19 vaccination and SARS-CoV-2 infection in Hong Kong: A population-based cohort study.
The risk of incident diabetes following Coronavirus Disease 2019 (COVID-19) vaccination remains to be elucidated. Also, it is unclear whether the risk of incident diabetes after Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is modified by vaccination status or differs by SARS-CoV-2 variants. We evaluated the incidence of diabetes following mRNA (BNT162b2), inactivated (CoronaVac) COVID-19 vaccines, and after SARS-CoV-2 infection.
In this population-based cohort study, individuals without known diabetes were identified from an electronic health database in Hong Kong. The first cohort included people who received ≥1 dose of COVID-19 vaccine and those who did not receive any COVID-19 vaccines up to September 2021. The second cohort consisted of confirmed COVID-19 patients and people who were never infected up to March 2022. Both cohorts were followed until August 15, 2022. A total of 325,715 COVID-19 vaccine recipients (CoronaVac: 167,337; BNT162b2: 158,378) and 145,199 COVID-19 patients were 1:1 matched to their respective controls using propensity score for various baseline characteristics. We also adjusted for previous SARS-CoV-2 infection when estimating the conditional probability of receiving vaccinations, and vaccination status when estimating the conditional probability of contracting SARS-CoV-2 infection. Hazard ratios (HRs) and 95% confidence intervals (CIs) for incident diabetes were estimated using Cox regression models. In the first cohort, we identified 5,760 and 4,411 diabetes cases after receiving CoronaVac and BNT162b2 vaccines, respectively. Upon a median follow-up of 384 to 386 days, there was no evidence of increased risks of incident diabetes following CoronaVac or BNT162b2 vaccination (CoronaVac: 9.08 versus 9.10 per 100,000 person-days, HR = 0.998 [95% CI 0.962 to 1.035]; BNT162b2: 7.41 versus 8.58, HR = 0.862 [0.828 to 0.897]), regardless of diabetes type. In the second cohort, we observed 2,109 cases of diabetes following SARS-CoV-2 infection. Upon a median follow-up of 164 days, SARS-CoV-2 infection was associated with significantly higher risk of incident diabetes (9.04 versus 7.38, HR = 1.225 [1.150 to 1.305])-mainly type 2 diabetes-regardless of predominant circulating variants, albeit lower with Omicron variants (p for interaction = 0.009). The number needed to harm at 6 months was 406 for 1 additional diabetes case. Subgroup analysis revealed no evidence of increased risk of incident diabetes among fully vaccinated COVID-19 survivors. Main limitations of our study included possible misclassification bias as type 1 diabetes was identified through diagnostic coding and possible residual confounders due to its observational nature.
There was no evidence of increased risks of incident diabetes following COVID-19 vaccination. The risk of incident diabetes increased following SARS-CoV-2 infection, mainly type 2 diabetes. The excess risk was lower, but still statistically significant, for Omicron variants. Fully vaccinated individuals might be protected from risks of incident diabetes following SARS-CoV-2 infection.
Xiong X
,Lui DTW
,Chung MSH
,Au ICH
,Lai FTT
,Wan EYF
,Chui CSL
,Li X
,Cheng FWT
,Cheung CL
,Chan EWY
,Lee CH
,Woo YC
,Tan KCB
,Wong CKH
,Wong ICK
... -
《-》
Protection from previous natural infection compared with mRNA vaccination against SARS-CoV-2 infection and severe COVID-19 in Qatar: a retrospective cohort study.
Understanding protection conferred by natural SARS-CoV-2 infection versus COVID-19 vaccination is important for informing vaccine mandate decisions. We compared protection conferred by natural infection versus that from the BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) vaccines in Qatar.
We conducted two matched retrospective cohort studies that emulated target trials. Data were obtained from the national federated databases for COVID-19 vaccination, SARS-CoV-2 testing, and COVID-19-related hospitalisation and death between Feb 28, 2020 (pandemic onset in Qatar) and May 12, 2022. We matched individuals with a documented primary infection and no vaccination record (natural infection cohort) with individuals who had received two doses (primary series) of the same vaccine (BNT162b2-vaccinated or mRNA-1273-vaccinated cohorts) at the start of follow-up (90 days after the primary infection). Individuals were exact matched (1:1) by sex, 10-year age group, nationality, comorbidity count, and timing of primary infection or first-dose vaccination. Incidence of SARS-CoV-2 infection and COVID-19-related hospitalisation and death in the natural infection cohorts was compared with incidence in the vaccinated cohorts, using Cox proportional hazards regression models with adjustment for matching factors.
Between Jan 5, 2021 (date of second-dose vaccine roll-out) and May 12, 2022, 104 500 individuals vaccinated with BNT162b2 and 61 955 individuals vaccinated with mRNA-1273 were matched to unvaccinated individuals with a documented primary infection. During follow-up, 7123 SARS-CoV-2 infections were recorded in the BNT162b2-vaccinated cohort and 3583 reinfections were recorded in the matched natural infection cohort. 4282 SARS-CoV-2 infections were recorded in the mRNA-1273-vaccinated cohort and 2301 reinfections were recorded in the matched natural infection cohort. The overall adjusted hazard ratio (HR) for SARS-CoV-2 infection was 0·47 (95% CI 0·45-0·48) after previous natural infection versus BNT162b2 vaccination, and 0·51 (0·49-0·54) after previous natural infection versus mRNA-1273 vaccination. The overall adjusted HR for severe (acute care hospitalisations), critical (intensive care unit hospitalisations), or fatal COVID-19 cases was 0·24 (0·08-0·72) after previous natural infection versus BNT162b2 vaccination, and 0·24 (0·05-1·19) after previous natural infection versus mRNA-1273 vaccination. Severe, critical, or fatal COVID-19 was rare in both the natural infection and vaccinated cohorts.
Previous natural infection was associated with lower incidence of SARS-CoV-2 infection, regardless of the variant, than mRNA primary-series vaccination. Vaccination remains the safest and most optimal tool for protecting against infection and COVID-19-related hospitalisation and death, irrespective of previous infection status.
The Biomedical Research Program and the Biostatistics, Epidemiology, and Biomathematics Research Core, Weill Cornell Medicine-Qatar; Qatar Ministry of Public Health; Hamad Medical Corporation; Sidra Medicine; Qatar Genome Programme; and Qatar University Biomedical Research Center.
Chemaitelly H
,Ayoub HH
,AlMukdad S
,Coyle P
,Tang P
,Yassine HM
,Al-Khatib HA
,Smatti MK
,Hasan MR
,Al-Kanaani Z
,Al-Kuwari E
,Jeremijenko A
,Kaleeckal AH
,Latif AN
,Shaik RM
,Abdul-Rahim HF
,Nasrallah GK
,Al-Kuwari MG
,Butt AA
,Al-Romaihi HE
,Al-Thani MH
,Al-Khal A
,Bertollini R
,Abu-Raddad LJ
... -
《Lancet Microbe》
Risk and symptoms of COVID-19 in health professionals according to baseline immune status and booster vaccination during the Delta and Omicron waves in Switzerland-A multicentre cohort study.
Knowledge about protection conferred by previous Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and/or vaccination against emerging viral variants allows clinicians, epidemiologists, and health authorities to predict and reduce the future Coronavirus Disease 2019 (COVID-19) burden. We investigated the risk and symptoms of SARS-CoV-2 (re)infection and vaccine breakthrough infection during the Delta and Omicron waves, depending on baseline immune status and subsequent vaccinations.
In this prospective, multicentre cohort performed between August 2020 and March 2022, we recruited hospital employees from ten acute/nonacute healthcare networks in Eastern/Northern Switzerland. We determined immune status in September 2021 based on serology and previous SARS-CoV-2 infections/vaccinations: Group N (no immunity); Group V (twice vaccinated, uninfected); Group I (infected, unvaccinated); Group H (hybrid: infected and ≥1 vaccination). Date and symptoms of (re)infections and subsequent (booster) vaccinations were recorded until March 2022. We compared the time to positive SARS-CoV-2 swab and number of symptoms according to immune status, viral variant (i.e., Delta-dominant before December 27, 2021; Omicron-dominant on/after this date), and subsequent vaccinations, adjusting for exposure/behavior variables. Among 2,595 participants (median follow-up 171 days), we observed 764 (29%) (re)infections, thereof 591 during the Omicron period. Compared to group N, the hazard ratio (HR) for (re)infection was 0.33 (95% confidence interval [CI] 0.22 to 0.50, p < 0.001) for V, 0.25 (95% CI 0.11 to 0.57, p = 0.001) for I, and 0.04 (95% CI 0.02 to 0.10, p < 0.001) for H in the Delta period. HRs substantially increased during the Omicron period for all groups; in multivariable analyses, only belonging to group H was associated with protection (adjusted HR [aHR] 0.52, 95% CI 0.35 to 0.77, p = 0.001); booster vaccination was associated with reduction of breakthrough infection risk in groups V (aHR 0.68, 95% CI 0.54 to 0.85, p = 0.001) and H (aHR 0.67, 95% CI 0.45 to 1.00, p = 0.048), largely observed in the early Omicron period. Group H (versus N, risk ratio (RR) 0.80, 95% CI 0.66 to 0.97, p = 0.021) and participants with booster vaccination (versus nonboosted, RR 0.79, 95% CI 0.71 to 0.88, p < 0.001) reported less symptoms during infection. Important limitations are that SARS-CoV-2 swab results were self-reported and that results on viral variants were inferred from the predominating strain circulating in the community at that time, rather than sequencing.
Our data suggest that hybrid immunity and booster vaccination are associated with a reduced risk and reduced symptom number of SARS-CoV-2 infection during Delta- and Omicron-dominant periods. For previously noninfected individuals, booster vaccination might reduce the risk of symptomatic Omicron infection, although this benefit seems to wane over time.
Babouee Flury B
,Güsewell S
,Egger T
,Leal O
,Brucher A
,Lemmenmeier E
,Meier Kleeb D
,Möller JC
,Rieder P
,Rütti M
,Schmid HR
,Stocker R
,Vuichard-Gysin D
,Wiggli B
,Besold U
,McGeer A
,Risch L
,Friedl A
,Schlegel M
,Kuster SP
,Kahlert CR
,Kohler P
,SURPRISE Study Group
... -
《-》