-
Using ultra-performance liquid chromatography with linear ion trap-electrostatic field orbitrap mass spectrometry, network pharmacology, and molecular docking to explore the constituent targets and action mechanisms of decoction of Angelica sinensis, Zing
Liu Z
,Zheng Z
,Wang T
,Liu Z
,Zuo Z
... -
《-》
-
Exploring the Mechanisms of Self-made Kuiyu Pingchang Recipe for the Treatment of Ulcerative Colitis and Irritable Bowel Syndrome using a Network Pharmacology-based Approach and Molecular Docking.
Ulcerative colitis (UC) and irritable bowel syndrome (IBS) are common intestinal diseases. According to the clinical experience and curative effect, the authors formulated Kuiyu Pingchang Decoction (KYPCD) comprised of Paeoniae radix alba, Aurantii Fructus, Herba euphorbiae humifusae, Lasiosphaera seu Calvatia, Angelicae sinensis radix, Panax ginseng C.A. Mey., Platycodon grandiforus and Allium azureum Ledeb.
The aim of the present study was to explore the mechanisms of KYPCD in the treatment of UC and IBS following the Traditional Chinese Medicine (TCM) theory of "Treating different diseases with the same treatment".
The chemical ingredients and targets of KYPCD were obtained using the Traditional Chinese Medicine Systems Pharmacology database and analysis platform (TCMSP). The targets of UC and IBS were extracted using the DisGeNET, GeneCards, DrugBANK, OMIM and TTD databases. The "TCM-component-target" network and the "TCM-shared target-disease" network were imaged using Cytoscape software. The protein-protein interaction (PPI) network was built using the STRING database. The DAVID platform was used to analyze the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Using Autodock Tools software, the main active components of KYPCD were molecularly docked with their targets and visualized using PyMOL.
A total of 46 active ingredients of KYPCD corresponding to 243 potential targets, 1,565 targets of UC and 1,062 targets of IBS, and 70 targets among active ingredients and two diseases were screened. Core targets in the PPI network included IL6, TNF, AKT1, IL1B, TP53, EGFR and VEGFA. GO and KEGG enrichment analysis demonstrated 563 biological processes, 48 cellular components, 82 molecular functions and 144 signaling pathways. KEGG enrichment results revealed that the regulated pathways were mainly related to the PI3K-AKT, MAPK, HIF-1 and IL-17 pathways. The results of molecular docking analysis indicated that the core active ingredients of KYPCD had optimal binding activity to their corresponding targets.
KYPCD may use IL6, TNF, AKT1, IL1B, TP53, EGFR and VEGFA as the key targets to achieve the treatment of UC and IBS through the PI3K-AKT, MAPK, HIF-1 and IL-17 pathways.
Wen Y
,Wang X
,Si K
,Xu L
,Huang S
,Zhan Y
... -
《-》
-
Gleditsiae Sinensis Fructus ingredients and mechanism in anti-asthmatic bronchitis research.
Gleditsiae Sinensis Fructus (GSF) is commonly used in traditional medicine to treat respiratory diseases such as bronchial asthma. However, there is a lack of research on the chemical composition of GSF and the pharmacological substance and mechanism of action for GSF in treating bronchial asthma.
The chemical constituents of GSF were analyzed using ultrahigh-performance liquid chromatography-quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS). In this study, we combined network pharmacology, molecular docking techniques, and experimental validation to explore the therapeutic efficacy and underlying mechanism of GSF in the treatment of bronchial asthma.
Characterization of the chemical constituents of GSF was conducted using UHPLC-Q-Orbitrap HRMS. The identified chemical components were subjected to screening for active ingredients in the Swiss Absorption, Distribution, Metabolism, and Excretion (ADME) database. Relevant databases were utilized to retrieve target proteins for the active ingredients and targets associated with bronchial asthma disease, and the common targets between the two were selected. Subsequently, the protein-protein interaction (PPI) network was constructed using the String database and Cytoscape software to identify key targets. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed using the Metascape database. The "component-common target" network was constructed using Cytoscape to identify the primary active ingredients. Molecular docking validation was conducted using AutoDock software. The bronchial asthma mouse model was established using ovalbumin (OVA), and the lung organ index of the mice was measured. Lung tissue pathological changes were observed using hematoxylin and eosin (HE), Periodic Acid-Schiff (PAS), and Masson staining. The respiratory resistance (Penh) of the mice was assessed using a pulmonary function test instrument. An enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of IgE, IL-4, IL-5, and IL-13 in the mouse serum. Immunofluorescence staining was performed to detect the protein expression levels of AKT and PI3K in the lung tissues. An in vitro experiment was performed to observe the effects of echinocystic acid (EA) on IL-4 stimulated Human ASMCs (hASMCs). Cell viability was measured using a CCK-8 assay to calculate the IC50 value of the EA. A wound healing test was conducted to observe the effect of EA on degree of healing. RT-qPCR was performed to detect the influence of EA on the mRNA expression levels of ALB, SRC, TNF-α, AKT1, and IL6 in the cells.
A total of 95 chemical constituents were identified from the GSF. Of these, 37 were identified as active ingredients. There were 169 overlapping targets between the active ingredients and the disease targets. A topological analysis of the protein-protein interaction (PPI) network identified the core targets as IL6, TNF, ALB, AKT1, and SRC. An enrichment analysis revealed that the treatment of bronchial asthma with GSF primarily involved the AGE-RAGE signaling pathway and the PI3K-Akt signaling pathway, among others. The primary active ingredients included 13(s)-HOTRE, linolenic acid, and acacetin. The molecular docking results demonstrated a favorable binding activity between the critical components of GSF and the core targets. Animal experimental studies indicated that GSF effectively improved symptoms, lung function, and lung tissue pathological changes in the OVA-induced asthmatic mice, while alleviating inflammatory responses. GSF decreased the fluorescent intensity of the AKT and PI3K proteins. The IC50 value of EA was 30.02μg/ml. EA (30) significantly promoted the proliferation of IL4-stimulated hASMCs cells. EA (30) significantly increased the expression of ALB and SRC mRNA and decreased the expressions of TNF-α, AKT, and IL6 mRNA.
The multiple active ingredients found in GSF exerted their anti-inflammatory effects through multiple targets and pathways. This preliminary study revealed the core target and the mechanism of action underlying its treatment of bronchial asthma. These findings provided valuable insights for further research on the pharmacological substances and quality control of GSF.
Li H
,Kang L
,Dou S
,Zhang Y
,Zhang Y
,Li N
,Cao Y
,Liu M
,Han D
,Li K
,Feng W
... -
《-》
-
The mechanisms of action of WeiChang'An Pill (WCAP) treat diarrhoea-predominant irritable bowel syndrome (IBS-D) using network pharmacology approach and in vivo studies.
WeiChang'An Pill (WCAP) is used in Traditional Chinese Medicine (TCM) to clinically treat diarrhoea-predominant irritable bowel syndrome (IBS-D); however, the underlying pharmacological mechanisms are unclear to date.
To explore the mechanism underlying the therapeutic action of WCAP in IBS-D using a network pharmacology approach and in vivo experiments.
The active compounds of WCAP were selected from the TCM Systems Pharmacology Database and TCM Integrated Database, and the potential targets were identified using the Swiss Target Prediction and Similarity Ensemble Approach (SEA) databases. The targets related to IBS-D were mined from the Therapeutic Target Database (TTD), National Center for Biotechnology Information Search database (NCBI), DrugBank database, and DisGeNET database. The intersecting protein-protein interactions (PPIs) of the drug-disease crossover genes were analysed, and the central PPI network was constructed using the String database, version 11.0, and Cytoscape version 3.7.2. Following Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes pathway analyses, the gene-pathway network was constructed for identifying the key target genes and pathways. Based on the results and existing evidence, it was selected the cyclic adenosine monophosphate (cAMP) signalling pathway for further validation using in vivo experiments.
A total of 872 targets were identified from the 77 active compounds in WCAP, which shared 78 targets that were predicted to be related to IBS-D. Twenty-one core targets were identified from the PPI network, which was constructed from the common targets. The results of enrichment analysis revealed that HRT2B, ADRA1A, ADRA1D, and CHRM2 could be the key targets of WCAP in IBS-D, and 11 signalling pathways, including the neuroactive ligand-receptor interaction, calcium signalling, and cAMP signalling pathways, were identified as crucial for the therapeutic activity of WCAP in IBS-D. We also identified the possibility of several interactions and crosstalk between the different pathways. Subsequent molecular biology experiments revealed that the expression levels of cAMP, phospho-(Ser/Thr) protein kinase A substrates (p-PKA), 5-hydroxytryptamine, and proteins in the cAMP signalling pathway, including G protein-coupled receptor (GPCR), adenylyl cyclase 5 (AC5), and cAMP-response element binding protein (CREB), were significantly upregulated in rat models of IBS-D following treatment with WCAP (P < 0.05). However, a reverse trend was observed in the expression of nuclear factor kappa-B (NF-κB) (P < 0.05), which could be attributed to the low-grade inflammation that occurs in IBS-D.
We demonstrated that WCAP may alleviate the symptoms of diarrhoea and visceral sensitivity in IBS-D by regulating the cAMP signalling pathway.
Chen Y
,Chu F
,Lin J
,Su Z
,Liao M
,Li T
,Li Y
,Johnson N
,Zheng H
,Ding X
... -
《-》
-
Exploration of the Potential Mechanism of Yujin Powder Treating Dampness-heat Diarrhea by Integrating UPLC-MS/MS and Network Pharmacology Prediction.
Jiang LD
,Zhang WD
,Wang BS
,Cai YZ
,Qin X
,Zhao WB
,Ji P
,Yuan ZW
,Wei YM
,Yao WL
... -
《-》