Whole transcriptome analysis of HCT-8 cells infected by Cryptosporidium parvum.
Cryptosporidium species are zoonotic protozoans that are important causes of diarrhoeal disease in both humans and animals. Non-coding RNAs (ncRNAs) play an important role in the innate immune defense against Cryptosporidium infection, but the underlying molecular mechanisms in the interaction between human ileocecal adenocarcinoma (HCT-8) cells and Cryptosporidium species have not been entirely revealed.
The expression profiles of messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) in the early phase of infection of HCT-8 cells with Cryptosporidium parvum and at 3 and 12 h post infection were analyzed using the RNA-sequencing technique. The biological functions of differentially expressed RNAs (dif-RNAs) were discovered through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The targeting relationships between three ncRNAs and mRNAs were analyzed using bioinformatics methods, followed by building a competing endogenous RNA (ceRNA) regulatory network centered on miRNAs.
After strictly filtering the raw data, our analysis revealed 393 dif-lncRNAs, 69 dif-miRNAs and 115 dif-mRNAs at 3 hpi, and 450 dif-lncRNAs, 129 dif-miRNAs, 117 dif-mRNAs and one dif-circRNA at 12 hpi. Of these, 94 dif-lncRNAs, 24 dif-miRNAs and 22 dif-mRNAs were detected at both post-infection time points. Eleven dif-lncRNAs, seven dif-miRNAs, eight dif-mRNAs and one circRNA were randomly selected and confirmed using the quantitative real-time PCR. Bioinformatics analyses showed that the dif-mRNAs were significantly enriched in nutritional absorption, metabolic processes and metabolism-related pathways, while the dif-lncRNAs were mainly involved in the pathways related to the infection and pathogenicity of C. parvum (e.g. tight junction protein) and immune-related pathways (e.g. cell adhesion molecules). In contrast, dif-miRNAs and dif-circRNA were significantly enriched in apoptosis and apoptosis-related pathways. Among the downregulated RNAs, the miRNAs has-miR-324-3p and hsa-miR-3127-5p appear to be crucial miRNAs which could negatively regulate circRNA, lncRNA and mRNA.
The whole transcriptome profiles of HCT-8 cells infected with C. parvum were obtained in this study. The results of the GO and KEGG pathway analyses suggest significant roles for these dif-RNAs during the course of C. parvum infection. A ceRNA regulation network containing miRNA at its center was constructed for the first time, with hsa-miR-324-3p and hsa-miR-3127-5p being the crucial miRNAs. These findings provide novel insights into the responses of human intestinal epithelial cells to C. parvum infection.
Sun L
,Li J
,Xie F
,Wu S
,Shao T
,Li X
,Li J
,Jian F
,Zhang S
,Ning C
,Zhang L
,Wang R
... -
《Parasites & Vectors》
Identification of potential biomarkers and pathways associated with carotid atherosclerotic plaques in type 2 diabetes mellitus: A transcriptomics study.
Type 2 diabetes mellitus (T2DM) affects the formation of carotid atherosclerotic plaques (CAPs) and patients are prone to plaque instability. It is crucial to clarify transcriptomics profiles and identify biomarkers related to the progression of T2DM complicated by CAPs. Ten human CAP samples were obtained, and whole transcriptome sequencing (RNA-seq) was performed. Samples were divided into two groups: diabetes mellitus (DM) versus non-DM groups and unstable versus stable groups. The Limma package in R was used to identify lncRNAs, circRNAs, and mRNAs. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, protein-protein interaction (PPI) network creation, and module generation were performed for differentially expressed mRNAs. Cytoscape was used to create a transcription factor (TF)-mRNA regulatory network, lncRNA/circRNA-mRNA co-expression network, and a competitive endogenous RNA (ceRNA) network. The GSE118481 dataset and RT-qPCR were used to verify potential mRNAs.The regulatory network was constructed based on the verified core genes and the relationships were extracted from the above network. In total, 180 differentially expressed lncRNAs, 343 circRNAs, and 1092 mRNAs were identified in the DM versus non-DM group; 240 differentially expressed lncRNAs, 390 circRNAs, and 677 mRNAs were identified in the unstable versus stable group. Five circRNAs, 14 lncRNAs, and 171 mRNAs that were common among all four groups changed in the same direction. GO/KEGG functional enrichment analysis showed that 171 mRNAs were mainly related to biological processes, such as immune responses, inflammatory responses, and cell adhesion. Five circRNAs, 14 lncRNAs, 46 miRNAs, and 54 mRNAs in the ceRNA network formed a regulatory relationship. C22orf34-hsa-miR-6785-5p-RAB37, hsacirc_013887-hsa-miR-6785-5p/hsa-miR-4763-5p/hsa-miR-30b-3p-RAB37, MIR4435-1HG-hsa-miR-30b-3p-RAB37, and GAS5-hsa-miR-30b-3p-RAB37 may be potential RNA regulatory pathways. Seven upregulated mRNAs were verified using the GSE118481 dataset and RT-qPCR. The regulatory network included seven mRNAs, five circRNAs, six lncRNAs, and 14 TFs. We propose five circRNAs (hsacirc_028744, hsacirc_037219, hsacirc_006308, hsacirc_013887, and hsacirc_045622), six lncRNAs (EPB41L4A-AS1, LINC00969, GAS5, MIR4435-1HG, MIR503HG, and SNHG16), and seven mRNAs (RAB37, CCR7, CD3D, TRAT1, VWF, ICAM2, and TMEM244) as potential biomarkers related to the progression of T2DM complicated with CAP. The constructed ceRNA network has important implications for potential RNA regulatory pathways.
Yu T
,Xu B
,Bao M
,Gao Y
,Zhang Q
,Zhang X
,Liu R
... -
《Frontiers in Endocrinology》
CircRNA, lncRNA, and mRNA profiles of umbilical cord blood exosomes from preterm newborns showing bronchopulmonary dysplasia.
Bronchopulmonary dysplasia (BPD) represents a multifactorial chronic pulmonary pathology and a major factor causing premature illness and death. The therapeutic role of exosomes in BPD has been feverishly investigated. Meanwhile, the potential roles of exosomal circRNAs, lncRNAs, and mRNAs in umbilical cord blood (UCB) serum have not been studied. This study aimed to detect the expression profiles of circRNAs, lncRNAs, and mRNAs in UCB-derived exosomes of infants with BPD. Microarray analysis was performed to compare the RNA profiles of UCB-derived exosomes of a preterm newborn with (BPD group) and without (non-BPD, NBPD group) BPD. Then, circRNA/lncRNA-miRNA-mRNA co-expression networks were built to determine their association with BPD. In addition, cell counting kit-8 (CCK-8) assay was used to evaluate the proliferation of lipopolysaccharide (LPS)-induced human bronchial epithelial cells (BEAS-2B cells) and human umbilical vein endothelial cells (HUVECs). The levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in LPS-induced BEAS-2B cells and HUVECs were assessed through Western blot analysis. Then, quantitative reverse transcription-polymerase chain reaction assay was used to evaluate the expression levels of four differentially expressed circRNAs (hsa_circ_0086913, hsa_circ_0049170, hsa_circ_0087059, and hsa_circ_0065188) and two lncRNAs (small nucleolar RNA host gene 20 (SNHG20) and LINC00582) detected in LPS-induced BEAS-2B cells or HUVECs. A total of 317 circRNAs, 104 lncRNAs, and 135 mRNAs showed significant differential expression in UCB-derived exosomes of preterm infants with BPD compared with those with NBPD. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to examine differentially expressed exosomal circRNAs, lncRNAs, and mRNAs. The results showed that the GO terms and KEGG pathways mostly involving differentially expressed exosomal RNAs were closely associated with endothelial or epithelial cell development. In vitro, CCK-8 and Western blot assays revealed that LPS remarkably inhibited the viability and promoted inflammatory responses (TNF-α and IL-1β) of BEAS-2B cells or HUVECs. The expression levels of circRNAs hsa_circ_0049170 and hsa_circ_0087059 were upregulated in LPS-induced BEAS-2B cells; the expression level of hsa_circ_0086913 was upregulated and that of hsa_circ_0065188 was downregulated in LPS-induced HUVECs. Moreover, the expression level of lncRNA SNHG20 was upregulated and that of LINC00582 was downregulated in LPS-induced BEAS-2B cells. Further, 455 circRNA/lncRNA-miRNA-mRNA interaction networks were predicted, including hsa_circ_0086913/hsa-miR-103a-3p/transmembrane 4 L six family member 1 (TM4SF1) and lncRNA-SNHG20/hsa-miR-6720-5p/spermine synthase (SMS) networks, which may take part in BPD.
This study provided a systematic perspective on UCB-derived exosomal circRNAs and lncRNAs and laid an important foundation for further investigating the potential biological functions of exosomal circRNAs and lncRNAs in BPD.
• BPD represents a multifactorial chronic pulmonary pathology and a major factor causing premature illness and death. • The therapeutic role of exosomes in BPD has been feverishly investigated, and exosomal RNAs were ignored.
• The profiles of UCB-derived exosomal circRNAs, lncRNAs, and mRNAs were performed. • Several differentially expressed circRNAs and lncRNAs were identified in LPS-induced BEAS-2B cells and HUVECs.
Wang Y
,Wang X
,Xu Q
,Yin J
,Wang H
,Zhang L
... -
《-》