Performance evaluation of ChatGPT, GPT-4, and Bard on the official board examination of the Japan Radiology Society.

来自 PUBMED

作者:

Toyama YHarigai AAbe MNagano MKawabata MSeki YTakase K

展开

摘要:

Herein, we assessed the accuracy of large language models (LLMs) in generating responses to questions in clinical radiology practice. We compared the performance of ChatGPT, GPT-4, and Google Bard using questions from the Japan Radiology Board Examination (JRBE). In total, 103 questions from the JRBE 2022 were used with permission from the Japan Radiological Society. These questions were categorized by pattern, required level of thinking, and topic. McNemar's test was used to compare the proportion of correct responses between the LLMs. Fisher's exact test was used to assess the performance of GPT-4 for each topic category. ChatGPT, GPT-4, and Google Bard correctly answered 40.8% (42 of 103), 65.0% (67 of 103), and 38.8% (40 of 103) of the questions, respectively. GPT-4 significantly outperformed ChatGPT by 24.2% (p < 0.001) and Google Bard by 26.2% (p < 0.001). In the categorical analysis by level of thinking, GPT-4 correctly answered 79.7% of the lower-order questions, which was significantly higher than ChatGPT or Google Bard (p < 0.001). The categorical analysis by question pattern revealed GPT-4's superiority over ChatGPT (67.4% vs. 46.5%, p = 0.004) and Google Bard (39.5%, p < 0.001) in the single-answer questions. The categorical analysis by topic revealed that GPT-4 outperformed ChatGPT (40%, p = 0.013) and Google Bard (26.7%, p = 0.004). No significant differences were observed between the LLMs in the categories not mentioned above. The performance of GPT-4 was significantly better in nuclear medicine (93.3%) than in diagnostic radiology (55.8%; p < 0.001). GPT-4 also performed better on lower-order questions than on higher-order questions (79.7% vs. 45.5%, p < 0.001). ChatGPTplus based on GPT-4 scored 65% when answering Japanese questions from the JRBE, outperforming ChatGPT and Google Bard. This highlights the potential of using LLMs to address advanced clinical questions in the field of radiology in Japan.

收起

展开

DOI:

10.1007/s11604-023-01491-2

被引量:

31

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(11)

引证文献(31)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读