-
Molecular targets and mechanisms of Guanxinning tablet in treating atherosclerosis: Network pharmacology and molecular docking analysis.
Guanxinning tablet (GXNT), a Chinese patent medicine, is composed of salvia miltiorrhiza bunge and ligusticum striatum DC, which may play the role of endothelial protection through many pathways. We aimed to explore the molecular mechanisms of GXNT against atherosclerosis (AS) through network pharmacology and molecular docking verification.
The active ingredients and their potential targets of GXNT were obtained in traditional Chinese medicine systems pharmacology database and analysis platform and bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine databases. DrugBank, TTD, DisGeNET, OMIM, and GeneCards databases were used to screen the targets of AS. The intersection targets gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis were performed in DAVID database. GXNT-AS protein-protein interaction network, ingredient-target network and herb-target-pathway network were constructed by Cytoscape. Finally, we used AutoDock for molecular docking.
We screened 65 active ingredients of GXNT and 70 GXNT-AS intersection targets. The key targets of protein-protein interaction network were AKT1, JUN, STAT3, TNF, TP53, IL6, EGFR, MAPK14, RELA, and CASP3. The Kyoto encyclopedia of genes and genomes pathway enrichment analysis showed that pathways in cancer, lipid and atherosclerosis, and PI3K-Akt signaling pathway were the main pathways. The ingredient-target network showed that the key ingredients were luteolin, tanshinone IIA, myricanone, dihydrotanshinlactone, dan-shexinkum d, 2-isopropyl-8-methylphenanthrene-3,4-dione, miltionone I, deoxyneocryptotanshinone, Isotanshinone II and 4-methylenemiltirone. The results of molecular docking showed that tanshinone IIA, dihydrotanshinlactone, dan-shexinkum d, 2-isopropyl-8-methylphenanthrene-3,4-dione, miltionone I, deoxyneocryptotanshinone, Isotanshinone II and 4-methylenemiltirone all had good binding interactions with AKT1, EGFR and MAPK14.
The results of network pharmacology and molecular docking showed that the multiple ingredients within GXNT may confer protective effects on the vascular endothelium against AS through multitarget and multichannel mechanisms. AKT1, EGFR and MAPK14 were the core potential targets of GXNT against AS.
Niu C
,Zhang P
,Zhang L
,Lin D
,Lai H
,Xiao D
,Liu Y
,Zhuang R
,Li M
,Ma L
,Ye J
,Pan Y
... -
《-》
-
Understanding apoptotic induction by Sargentodoxa cuneata-Patrinia villosa herb pair via PI3K/AKT/mTOR signalling in colorectal cancer cells using network pharmacology and cellular studies.
Mu BX
,Li Y
,Ye N
,Liu S
,Zou X
,Qian J
,Wu C
,Zhuang Y
,Chen M
,Zhou JY
... -
《-》
-
Exploring the mechanism of Ginkgo biloba L. leaves in the treatment of vascular dementia based on network pharmacology, molecular docking, and molecular dynamics simulation.
Ginkgo biloba L. leaves (GBLs) play a substantial role in the treatment of vascular dementia (VD); however, the underlying mechanisms of action are unclear.
This study was conducted to investigate the mechanisms of action of GBLs in the treatment of VD through network pharmacology, molecular docking, and molecular dynamics simulations.
The active ingredients and related targets of GBLs were screened using the traditional Chinese medicine systems pharmacology, Swiss Target Prediction and GeneCards databases, and the VD-related targets were screened using the OMIM, DrugBank, GeneCards, and DisGeNET databases, and the potential targets were identified using a Venn diagram. We used Cytoscape 3.8.0 software and the STRING platform to construct traditional Chinese medicine-active ingredient-potential target and protein-protein interaction networks, respectively. After gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis of potential targets using the DAVID platform, the binding affinity between key active ingredients and targets was analyzed by molecular docking, and finally, the top 3 proteins-ligand pairs with the best binding were simulated by molecular dynamics to verify the molecular docking results.
A total of 27 active ingredients of GBLs were screened and 274 potential targets involved in the treatment of VD were identified. Quercetin, luteolin, kaempferol, and ginkgolide B were the core ingredients for treatment, and AKT1, TNF, IL6, VEGFA, IL1B, TP53, CASP3, SRC, EGFR, JUN, and EGFR were the main targets of action. The main biological processes involved apoptosis, inflammatory response, cell migration, lipopolysaccharide response, hypoxia response, and aging. PI3K/Akt appeared to be a key signaling pathway for GBLs in the treatment of VD. Molecular docking displayed strong binding affinity between the active ingredients and the targets. Molecular dynamics simulation results further verified the stability of their interactions.
This study revealed the potential molecular mechanisms involved in the treatment of VD by GBLs using multi-ingredient, multi-target, and multi-pathway interactions, providing a theoretical basis for the clinical treatment and lead drug development of VD.
Pan J
,Tang J
,Gai J
,Jin Y
,Tang B
,Fan X
... -
《-》
-
Potential Molecular Mechanisms of Ephedra Herb in the Treatment of Nephrotic Syndrome Based on Network Pharmacology and Molecular Docking.
To explore the possible mechanisms of Ephedra herb (EH) in the treatment of nephrotic syndrome (NS) by using network pharmacology and molecular docking in this study.
Active ingredients and related targets of EH were obtained from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, and the gene names corresponding to the proteins were found through the UniProt database. Then, target genes related to NS were screened out from GeneCards, PharmGKB, and OMIM databases. Next, the intersection targets were obtained successfully through Venn diagram, which were also seen as key target genes of EH and NS. Cytoscape 3.9.0 software was used to construct the effective "active ingredient-target" network diagram, and "drug-ingredient-target-disease (D-I-T-D)" network diagram. After that, the STRING database was used to construct a protein-protein interaction (PPI) network. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment involved in the targets were performed by the DAVID database and ClueGO plugin in Cytoscape. Finally, AutoDockTools software was used for molecular docking to verify the binding strength between main active ingredients and key target proteins.
A total of 22 main active ingredients such as quercetin, kaempferol, luteolin, and naringenin were obtained, which could act on 105 targets related to NS. Through PPI network, 53 core targets such as AKT1, TNF, IL6, VEGFA, and IL1B were found, which might play a crucial role in the treatment of NS. Meanwhile, these targets were significantly involved in PI3K-Akt signaling pathway, TNF signaling pathway, AGE-RAGE signaling pathway, hepatitis B, and pathways in cancer through GO and KEGG enrichment analysis. The docking results indicated that active ingredients such as kaempferol, luteolin, quercetin, and naringenin all had good binding to the target protein AKT1 or TNF. Among them, luteolin and naringenin binding with AKT1 showed the best binding energy (-6.2 kcal/mol).
This study indicated that the potential mechanism of EH in treating NS may be related to PI3K-Akt signaling pathway, TNF signaling pathway, and AGE-RAGE signaling pathway, which provided better approaches for exploring the mechanism in treating NS and new ideas for further in vivo and in vitro experimental verifications.
Yao T
,Wang Q
,Han S
,Lu Y
,Xu Y
,Wang Y
... -
《-》
-
Exploring the mechanisms underlying the therapeutic effect of Salvia miltiorrhiza in diabetic nephropathy using network pharmacology and molecular docking.
The mechanisms underlying the therapeutic effect of Salvia miltiorrhiza (SM) on diabetic nephropathy (DN) were examined using a systematic network pharmacology approach and molecular docking. The Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was used to screen active ingredients of SM. Targets were obtained using the SwissTargetPrediction and TCMSP databases. Proteins related to DN were retrieved from the GeneCards and DisGeNET databases. A protein-protein interaction (PPI) network was constructed using common SM/DN targets in the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. The Metascape platform was used for Gene Ontology (GO) function analysis, and the Cytoscape plug-in ClueGO was used for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Molecular docking was performed using iGEMDOCK and AutoDock Vina software. Pymol and LigPlos were used for network mapping. Sixty-six active ingredients and 189 targets of SM were found. Sixty-four targets overlapped with DN-related proteins. The PPI network revealed that AKT serine/threonine kinase 1 (AKT1), VEGFA, interleukin 6 (IL6), TNF, mitogen-activated protein kinase 1 (MAPK1), tumor protein p53 (TP53), epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3), mitogen-activated protein kinase 14 (MAPK14), and JUN were the ten most relevant targets. GO and KEGG analyses revealed that the common targets of DN and SM were mainly involved in advanced glycation end-products, oxidative stress, inflammatory response, and immune regulation. Molecular docking revealed that potential DN-related targets, including tumor necrosis factor (TNF), NOS2, and AKT1, more stably bound with salvianolic acid B than with tanshinone IIA. In conclusion, the present study revealed the active components and potential molecular therapeutic mechanisms of SM in DN and provides a reference for the wide application of SM in clinically managing DN.
Zhang L
,Han L
,Wang X
,Wei Y
,Zheng J
,Zhao L
,Tong X
... -
《-》