The burden of bacterial antimicrobial resistance in the WHO European region in 2019: a cross-country systematic analysis.
Antimicrobial resistance (AMR) represents one of the most crucial threats to public health and modern health care. Previous studies have identified challenges with estimating the magnitude of the problem and its downstream effect on human health and mortality. To our knowledge, this study presents the most comprehensive set of regional and country-level estimates of AMR burden in the WHO European region to date.
We estimated deaths and disability-adjusted life-years attributable to and associated with AMR for 23 bacterial pathogens and 88 pathogen-drug combinations for the WHO European region and its countries in 2019. Our methodological approach consisted of five broad components: the number of deaths in which infection had a role, the proportion of infectious deaths attributable to a given infectious syndrome, the proportion of infectious syndrome deaths attributable to a given pathogen, the percentage of a given pathogen resistant to an antimicrobial drug of interest, and the excess risk of mortality (or duration of an infection) associated with this resistance. These components were then used to estimate the disease burden by using two counterfactual scenarios: deaths attributable to AMR (considering an alternative scenario where infections with resistant pathogens are replaced with susceptible ones) and deaths associated with AMR (considering an alternative scenario where drug-resistant infections would not occur at all). Data were solicited from a wide array of international stakeholders; these included research hospitals, surveillance networks, and infection databases maintained by private laboratories and medical technology companies. We generated 95% uncertainty intervals (UIs) for final estimates as the 25th and 975th ordered values across 1000 posterior draws, and models were cross-validated for out-of-sample predictive validity.
We estimated 541 000 deaths (95% UI 370 000-763 000) associated with bacterial AMR and 133 000 deaths (90 100-188 000) attributable to bacterial AMR in the whole WHO European region in 2019. The largest fatal burden of AMR in the region came from bloodstream infections, with 195 000 deaths (104 000-333 000) associated with resistance, followed by intra-abdominal infections (127 000 deaths [81 900-185 000]) and respiratory infections (120 000 deaths [94 500-154 000]). Seven leading pathogens were responsible for about 457 000 deaths associated with resistance in 53 countries of this region; these pathogens were, in descending order of mortality, Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecium, Streptococcus pneumoniae, and Acinetobacter baumannii. Methicillin-resistant S aureus was shown to be the leading pathogen-drug combination in 27 countries for deaths attributable to AMR, while aminopenicillin-resistant E coli predominated in 47 countries for deaths associated with AMR.
The high levels of resistance for several important bacterial pathogens and pathogen-drug combinations, together with the high mortality rates associated with these pathogens, show that AMR is a serious threat to public health in the WHO European region. Our regional and cross-country analyses open the door for strategies that can be tailored to leading pathogen-drug combinations and the available resources in a specific location. These results underscore that the most effective way to tackle AMR in this region will require targeted efforts and investments in conjunction with continuous outcome-based research endeavours.
Bill & Melinda Gates Foundation, Wellcome Trust, and Department of Health and Social Care using UK aid funding managed by the Fleming Fund.
European Antimicrobial Resistance Collaborators
《The Lancet Regional Health》
Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis.
Antimicrobial resistance (AMR) poses a major threat to human health around the world. Previous publications have estimated the effect of AMR on incidence, deaths, hospital length of stay, and health-care costs for specific pathogen-drug combinations in select locations. To our knowledge, this study presents the most comprehensive estimates of AMR burden to date.
We estimated deaths and disability-adjusted life-years (DALYs) attributable to and associated with bacterial AMR for 23 pathogens and 88 pathogen-drug combinations in 204 countries and territories in 2019. We obtained data from systematic literature reviews, hospital systems, surveillance systems, and other sources, covering 471 million individual records or isolates and 7585 study-location-years. We used predictive statistical modelling to produce estimates of AMR burden for all locations, including for locations with no data. Our approach can be divided into five broad components: number of deaths where infection played a role, proportion of infectious deaths attributable to a given infectious syndrome, proportion of infectious syndrome deaths attributable to a given pathogen, the percentage of a given pathogen resistant to an antibiotic of interest, and the excess risk of death or duration of an infection associated with this resistance. Using these components, we estimated disease burden based on two counterfactuals: deaths attributable to AMR (based on an alternative scenario in which all drug-resistant infections were replaced by drug-susceptible infections), and deaths associated with AMR (based on an alternative scenario in which all drug-resistant infections were replaced by no infection). We generated 95% uncertainty intervals (UIs) for final estimates as the 25th and 975th ordered values across 1000 posterior draws, and models were cross-validated for out-of-sample predictive validity. We present final estimates aggregated to the global and regional level.
On the basis of our predictive statistical models, there were an estimated 4·95 million (3·62-6·57) deaths associated with bacterial AMR in 2019, including 1·27 million (95% UI 0·911-1·71) deaths attributable to bacterial AMR. At the regional level, we estimated the all-age death rate attributable to resistance to be highest in western sub-Saharan Africa, at 27·3 deaths per 100 000 (20·9-35·3), and lowest in Australasia, at 6·5 deaths (4·3-9·4) per 100 000. Lower respiratory infections accounted for more than 1·5 million deaths associated with resistance in 2019, making it the most burdensome infectious syndrome. The six leading pathogens for deaths associated with resistance (Escherichia coli, followed by Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa) were responsible for 929 000 (660 000-1 270 000) deaths attributable to AMR and 3·57 million (2·62-4·78) deaths associated with AMR in 2019. One pathogen-drug combination, meticillin-resistant S aureus, caused more than 100 000 deaths attributable to AMR in 2019, while six more each caused 50 000-100 000 deaths: multidrug-resistant excluding extensively drug-resistant tuberculosis, third-generation cephalosporin-resistant E coli, carbapenem-resistant A baumannii, fluoroquinolone-resistant E coli, carbapenem-resistant K pneumoniae, and third-generation cephalosporin-resistant K pneumoniae.
To our knowledge, this study provides the first comprehensive assessment of the global burden of AMR, as well as an evaluation of the availability of data. AMR is a leading cause of death around the world, with the highest burdens in low-resource settings. Understanding the burden of AMR and the leading pathogen-drug combinations contributing to it is crucial to making informed and location-specific policy decisions, particularly about infection prevention and control programmes, access to essential antibiotics, and research and development of new vaccines and antibiotics. There are serious data gaps in many low-income settings, emphasising the need to expand microbiology laboratory capacity and data collection systems to improve our understanding of this important human health threat.
Bill & Melinda Gates Foundation, Wellcome Trust, and Department of Health and Social Care using UK aid funding managed by the Fleming Fund.
Antimicrobial Resistance Collaborators
《-》
Global burden of bacterial antimicrobial resistance 1990-2021: a systematic analysis with forecasts to 2050.
Antimicrobial resistance (AMR) poses an important global health challenge in the 21st century. A previous study has quantified the global and regional burden of AMR for 2019, followed with additional publications that provided more detailed estimates for several WHO regions by country. To date, there have been no studies that produce comprehensive estimates of AMR burden across locations that encompass historical trends and future forecasts.
We estimated all-age and age-specific deaths and disability-adjusted life-years (DALYs) attributable to and associated with bacterial AMR for 22 pathogens, 84 pathogen-drug combinations, and 11 infectious syndromes in 204 countries and territories from 1990 to 2021. We collected and used multiple cause of death data, hospital discharge data, microbiology data, literature studies, single drug resistance profiles, pharmaceutical sales, antibiotic use surveys, mortality surveillance, linkage data, outpatient and inpatient insurance claims data, and previously published data, covering 520 million individual records or isolates and 19 513 study-location-years. We used statistical modelling to produce estimates of AMR burden for all locations, including those with no data. Our approach leverages the estimation of five broad component quantities: the number of deaths involving sepsis; the proportion of infectious deaths attributable to a given infectious syndrome; the proportion of infectious syndrome deaths attributable to a given pathogen; the percentage of a given pathogen resistant to an antibiotic of interest; and the excess risk of death or duration of an infection associated with this resistance. Using these components, we estimated disease burden attributable to and associated with AMR, which we define based on two counterfactuals; respectively, an alternative scenario in which all drug-resistant infections are replaced by drug-susceptible infections, and an alternative scenario in which all drug-resistant infections were replaced by no infection. Additionally, we produced global and regional forecasts of AMR burden until 2050 for three scenarios: a reference scenario that is a probabilistic forecast of the most likely future; a Gram-negative drug scenario that assumes future drug development that targets Gram-negative pathogens; and a better care scenario that assumes future improvements in health-care quality and access to appropriate antimicrobials. We present final estimates aggregated to the global, super-regional, and regional level.
In 2021, we estimated 4·71 million (95% UI 4·23-5·19) deaths were associated with bacterial AMR, including 1·14 million (1·00-1·28) deaths attributable to bacterial AMR. Trends in AMR mortality over the past 31 years varied substantially by age and location. From 1990 to 2021, deaths from AMR decreased by more than 50% among children younger than 5 years yet increased by over 80% for adults 70 years and older. AMR mortality decreased for children younger than 5 years in all super-regions, whereas AMR mortality in people 5 years and older increased in all super-regions. For both deaths associated with and deaths attributable to AMR, meticillin-resistant Staphylococcus aureus increased the most globally (from 261 000 associated deaths [95% UI 150 000-372 000] and 57 200 attributable deaths [34 100-80 300] in 1990, to 550 000 associated deaths [500 000-600 000] and 130 000 attributable deaths [113 000-146 000] in 2021). Among Gram-negative bacteria, resistance to carbapenems increased more than any other antibiotic class, rising from 619 000 associated deaths (405 000-834 000) in 1990, to 1·03 million associated deaths (909 000-1·16 million) in 2021, and from 127 000 attributable deaths (82 100-171 000) in 1990, to 216 000 (168 000-264 000) attributable deaths in 2021. There was a notable decrease in non-COVID-related infectious disease in 2020 and 2021. Our forecasts show that an estimated 1·91 million (1·56-2·26) deaths attributable to AMR and 8·22 million (6·85-9·65) deaths associated with AMR could occur globally in 2050. Super-regions with the highest all-age AMR mortality rate in 2050 are forecasted to be south Asia and Latin America and the Caribbean. Increases in deaths attributable to AMR will be largest among those 70 years and older (65·9% [61·2-69·8] of all-age deaths attributable to AMR in 2050). In stark contrast to the strong increase in number of deaths due to AMR of 69·6% (51·5-89·2) from 2022 to 2050, the number of DALYs showed a much smaller increase of 9·4% (-6·9 to 29·0) to 46·5 million (37·7 to 57·3) in 2050. Under the better care scenario, across all age groups, 92·0 million deaths (82·8-102·0) could be cumulatively averted between 2025 and 2050, through better care of severe infections and improved access to antibiotics, and under the Gram-negative drug scenario, 11·1 million AMR deaths (9·08-13·2) could be averted through the development of a Gram-negative drug pipeline to prevent AMR deaths.
This study presents the first comprehensive assessment of the global burden of AMR from 1990 to 2021, with results forecasted until 2050. Evaluating changing trends in AMR mortality across time and location is necessary to understand how this important global health threat is developing and prepares us to make informed decisions regarding interventions. Our findings show the importance of infection prevention, as shown by the reduction of AMR deaths in those younger than 5 years. Simultaneously, our results underscore the concerning trend of AMR burden among those older than 70 years, alongside a rapidly ageing global community. The opposing trends in the burden of AMR deaths between younger and older individuals explains the moderate future increase in global number of DALYs versus number of deaths. Given the high variability of AMR burden by location and age, it is important that interventions combine infection prevention, vaccination, minimisation of inappropriate antibiotic use in farming and humans, and research into new antibiotics to mitigate the number of AMR deaths that are forecasted for 2050.
UK Department of Health and Social Care's Fleming Fund using UK aid, and the Wellcome Trust.
GBD 2021 Antimicrobial Resistance Collaborators
《-》