In silico discovery of food-derived phytochemicals against asialoglycoprotein receptor 1 for treatment of hypercholesterolemia: Pharmacophore modeling, molecular docking and molecular dynamics simulation approach.

来自 PUBMED

作者:

Gao SWang LBai FXu S

展开

摘要:

Hypercholesterolemia is a significant risk factor for atherosclerotic cardiovascular disease (ASCVD). Successful management of cholesterol metabolism disorders can prevent these ASCVD effectively. Asialoglycoprotein receptor 1 (ASGR1) is the main subtype of sialoglycoprotein receptor, which is specifically expressed in the liver and mediates the endocytosis of blood asialoglycoprotein to lysosome degradation. Recently, ASGR1 has been reported as a new therapeutic target for the treatment of hypercholesterolemia. In this study, the main aim was to identify natural ASGR1 inhibitors from plant food chemicals library through pharmacophore and docking based virtual screening. Total 14 phytochemicals of potential ASGR1 inhibitors were identified, which presented docking affinity higher than control compound through docking based virtual screening. The docking pose showed the top three hits interacted residues were located at active pocket of ASGR1 with hydrogen bonds, hydrophobic interactions and electrostatic interactions. The top three hits (ZINC85664954, ZINC169372863, and ZINC195764535) were then subjected to 200 ns molecular dynamics simulation to evaluate the stability of docked complexes. These results showed that selected phytochemicals bound to ASGR1 with higher stability than control compound. Binding free energy of each docked complex was calculated by the Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) method. The binding free energy of ZINC85664954, ZINC169372863, ZINC195764535, and control-ASGR1 docked complexes were -18.359, -13.303, -14.389, and -6.229 kcal/mol, respectively. This indicated that selected hits bound to ASGR1 with higher affinity than control compound. Network pharmacology analysis shows that these phytochemicals have obvious multiple-effects and can regulate various biochemical pathways related to hypercholesterolemia. Besides, selected phytochemicals have suitable pharmacokinetics properties, suggesting that these compounds may be potential drug candidates. This study may be contributed to rational design of novel ASGR1 inhibitors for treatment of hypercholesterolemia.

收起

展开

DOI:

10.1016/j.jmgm.2023.108614

被引量:

2

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(264)

参考文献(0)

引证文献(2)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读