MSDRP: a deep learning model based on multisource data for predicting drug response.
摘要:
Cancer heterogeneity drastically affects cancer therapeutic outcomes. Predicting drug response in vitro is expected to help formulate personalized therapy regimens. In recent years, several computational models based on machine learning and deep learning have been proposed to predict drug response in vitro. However, most of these methods capture drug features based on a single drug description (e.g. drug structure), without considering the relationships between drugs and biological entities (e.g. target, diseases, and side effects). Moreover, most of these methods collect features separately for drugs and cell lines but fail to consider the pairwise interactions between drugs and cell lines. In this paper, we propose a deep learning framework, named MSDRP for drug response prediction. MSDRP uses an interaction module to capture interactions between drugs and cell lines, and integrates multiple associations/interactions between drugs and biological entities through similarity network fusion algorithms, outperforming some state-of-the-art models in all performance measures for all experiments. The experimental results of de novo test and independent test demonstrate the excellent performance of our model for new drugs. Furthermore, several case studies illustrate the rationality for using feature vectors derived from drug similarity matrices from multisource data to represent drugs and the interpretability of our model. The codes of MSDRP are available at https://github.com/xyzhang-10/MSDRP.
收起
展开
DOI:
10.1093/bioinformatics/btad514
被引量:
年份:
2023


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(129)
参考文献(36)
引证文献(1)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无