Detection of complex chromosome rearrangements using optical genome mapping.

来自 PUBMED

作者:

Qu JLi SYu D

展开

摘要:

Chromosomal structural variations (SVs) are a main cause of human genetic disease. Currently, karyotype, chromosomal microarray analysis (CMA), and fluorescent in situ hybridization (FISH) form the backbone of current routine diagnostics (CRD). These methods have their own limitations. CRD cannot identify cryptic balanced SVs and complex SVs even if these techniques were performed either simultaneously or in a sequential manner. Optical genome mapping (OGM) is a novel technology that can identify several classes of SVs with higher resolution, but studies on the applicability of OGM and its comparison with CRD are inadequate for difficult and complicated chromosomal SVs are lacking. Herein, seven patients with definite complicated SVs involving at least two breakpoints (BPs) were recruited for this study. The results of BPs and SVs from OGM were compared with those from CRD. The results showed that all BPs of five samples and partial BPs of two samples were detected by OGM. The undetected BPs were all close to the repeat-rich gap region. Besides, OGM also detected additional SVs including a cryptic balanced translocation, two additional complex chromosomal rearrangement (CCR). OGM yielded the additional information, such as the orientation of acentric fragments, BP positions, and genes mapped in the BP region for all the cases. The accuracy of additional SVs and BPs detected by OGM was verified by FISH panel and next-generation sequencing and Sanger sequencing. Taken together, OGM exhibit a better performance in detecting chromosomal SVs compared to the CRD. We suggested that OGM method should be utilized in the clinical examination to improve the efficiency and accuracy of genetic disease diagnosis, supplemented by FISH or karyotyping to compensate for the SVs in the repeat-rich gap region if necessary.

收起

展开

DOI:

10.1016/j.gene.2023.147688

被引量:

3

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(163)

参考文献(0)

引证文献(3)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读