Polyclonal immunoglobulins and hyperimmune globulins in prevention and management of infectious diseases.
Immunoglobulin therapy has a rich history of use in preventing and treating infectious diseases; however, clinical data on the efficacy of immunoglobulin is lacking for many infectious diseases. Immunoglobulin therapy is routinely used in postexposure prophylaxis for bacterial infections, including tetanus, botulism, and diphtheria, and viral infections, including hepatitis A and B and varicella. Immunoglobulin therapy has also been used in many severe and life-threatening infections where treatments are limited, including toxic shock syndrome, respiratory syncytial virus infection, and cytomegalovirus infection. The authors review the evidence for the use of immunoglobulin therapy in common adult infectious diseases.
Hsu JL
,Safdar N
《-》
Generation of recombinant hyperimmune globulins from diverse B-cell repertoires.
Plasma-derived polyclonal antibody therapeutics, such as intravenous immunoglobulin, have multiple drawbacks, including low potency, impurities, insufficient supply and batch-to-batch variation. Here we describe a microfluidics and molecular genomics strategy for capturing diverse mammalian antibody repertoires to create recombinant multivalent hyperimmune globulins. Our method generates of diverse mixtures of thousands of recombinant antibodies, enriched for specificity and activity against therapeutic targets. Each hyperimmune globulin product comprised thousands to tens of thousands of antibodies derived from convalescent or vaccinated human donors or from immunized mice. Using this approach, we generated hyperimmune globulins with potent neutralizing activity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in under 3 months, Fc-engineered hyperimmune globulins specific for Zika virus that lacked antibody-dependent enhancement of disease, and hyperimmune globulins specific for lung pathogens present in patients with primary immune deficiency. To address the limitations of rabbit-derived anti-thymocyte globulin, we generated a recombinant human version and demonstrated its efficacy in mice against graft-versus-host disease.
Keating SM
,Mizrahi RA
,Adams MS
,Asensio MA
,Benzie E
,Carter KP
,Chiang Y
,Edgar RC
,Gautam BK
,Gras A
,Leong J
,Leong R
,Lim YW
,Manickam VA
,Medina-Cucurella AV
,Niedecken AR
,Saini J
,Simons JF
,Spindler MJ
,Stadtmiller K
,Tinsley B
,Wagner EK
,Wayham N
,Tracy L
,Lundberg CV
,Büscher D
,Terencio JV
,Roalfe L
,Pearce E
,Richardson H
,Goldblatt D
,Ramjag AT
,Carrington CVF
,Simmons G
,Muench MO
,Chamow SM
,Monroe B
,Olson C
,Oguin TH
,Lynch H
,Jeanfreau R
,Mosher RA
,Walch MJ
,Bartley CR
,Ross CA
,Meyer EH
,Adler AS
,Johnson DS
... -
《-》
Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a rapid review.
Convalescent plasma and hyperimmune immunoglobulin may reduce mortality in patients with respiratory virus diseases, and are currently being investigated in trials as a potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding the benefits and risks is required. OBJECTIVES: To assess whether convalescent plasma or hyperimmune immunoglobulin transfusion is effective and safe in the treatment of people with COVID-19.
The protocol was pre-published with the Center for Open Science and can be accessed here: osf.io/dwf53 We searched the World Health Organization (WHO) COVID-19 Global Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, Centers for Disease Control and Prevention COVID-19 Research Article Database and trials registries to identify ongoing studies and results of completed studies on 23 April 2020 for case-series, cohort, prospectively planned, and randomised controlled trials (RCTs).
We followed standard Cochrane methodology and performed all steps regarding study selection in duplicate by two independent review authors (in contrast to the recommendations of the Cochrane Rapid Reviews Methods Group). We included studies evaluating convalescent plasma or hyperimmune immunoglobulin for people with COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies including populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)) and studies evaluating standard immunoglobulins.
We followed recommendations of the Cochrane Rapid Reviews Methods Group regarding data extraction and assessment. To assess bias in included studies, we used the assessment criteria tool for observational studies, provided by Cochrane Childhood Cancer. We rated the certainty of evidence using the GRADE approach for the following outcomes: all-cause mortality at hospital discharge, improvement of clinical symptoms (7, 15, and 30 days after transfusion), grade 3 and 4 adverse events, and serious adverse events. MAIN RESULTS: We included eight studies (seven case-series, one prospectively planned, single-arm intervention study) with 32 participants, and identified a further 48 ongoing studies evaluating convalescent plasma (47 studies) or hyperimmune immunoglobulin (one study), of which 22 are randomised. Overall risk of bias of the eight included studies was high, due to: study design; small number of participants; poor reporting within studies; and varied type of participants with different severities of disease, comorbidities, and types of previous or concurrent treatments, including antivirals, antifungals or antibiotics, corticosteroids, hydroxychloroquine and respiratory support. We rated all outcomes as very low certainty, and we were unable to summarise numerical data in any meaningful way. As we identified case-series studies only, we reported results narratively. Effectiveness of convalescent plasma for people with COVID-19 The following reported outcomes could all be related to the underlying natural history of the disease or other concomitant treatment, rather than convalescent plasma. All-cause mortality at hospital discharge All studies reported mortality. All participants were alive at the end of the reporting period, but not all participants had been discharged from hospital by the end of the study (15 participants discharged, 6 still hospitalised, 11 unclear). Follow-up ranged from 3 days to 37 days post-transfusion. We do not know whether convalescent plasma therapy affects mortality (very low-certainty evidence). Improvement of clinical symptoms (assessed by respiratory support) Six studies, including 28 participants, reported the level of respiratory support required; most participants required respiratory support at baseline. All studies reported improvement in clinical symptoms in at least some participants. We do not know whether convalescent plasma improves clinical symptoms (very low-certainty evidence). Time to discharge from hospital Six studies reported time to discharge from hospital for at least some participants, which ranged from four to 35 days after convalescent plasma therapy. Admission on the intensive care unit (ICU) Six studies included patients who were critically ill. At final follow-up the majority of these patients were no longer on the ICU or no longer required mechanical ventilation. Length of stay on the ICU Only one study (1 participant) reported length of stay on the ICU. The individual was discharged from the ICU 11 days after plasma transfusion. Safety of convalescent plasma for people with COVID-19 Grade 3 or 4 adverse events The studies did not report the grade of adverse events after convalescent plasma transfusion. Two studies reported data relating to participants who had experienced adverse events, that were presumably grade 3 or 4. One case study reported a participant who had moderate fever (38.9 °C). Another study (3 participants) reported a case of severe anaphylactic shock. Four studies reported the absence of moderate or severe adverse events (19 participants). We are very uncertain whether or not convalescent plasma therapy affects the risk of moderate to severe adverse events (very low-certainty evidence). Serious adverse events One study (3 participants) reported one serious adverse event. As described above, this individual had severe anaphylactic shock after receiving convalescent plasma. Six studies reported that no serious adverse events occurred. We are very uncertain whether or not convalescent plasma therapy affects the risk of serious adverse events (very low-certainty evidence). AUTHORS' CONCLUSIONS: We identified eight studies (seven case-series and one prospectively planned single-arm intervention study) with a total of 32 participants (range 1 to 10). Most studies assessed the risks of the intervention; reporting two adverse events (potentially grade 3 or 4), one of which was a serious adverse event. We are very uncertain whether convalescent plasma is effective for people admitted to hospital with COVID-19 as studies reported results inconsistently, making it difficult to compare results and to draw conclusions. We identified very low-certainty evidence on the effectiveness and safety of convalescent plasma therapy for people with COVID-19; all studies were at high risk of bias and reporting quality was low. No RCTs or controlled non-randomised studies evaluating benefits and harms of convalescent plasma have been completed. There are 47 ongoing studies evaluating convalescent plasma, of which 22 are RCTs, and one trial evaluating hyperimmune immunoglobulin. We will update this review as a living systematic review, based on monthly searches in the above mentioned databases and registries. These updates are likely to show different results to those reported here.
Valk SJ
,Piechotta V
,Chai KL
,Doree C
,Monsef I
,Wood EM
,Lamikanra A
,Kimber C
,McQuilten Z
,So-Osman C
,Estcourt LJ
,Skoetz N
... -
《Cochrane Database of Systematic Reviews》