-
Novel HIF-1α Inhibitor AMSP-30m Mitigates the Pathogenic Cellular Behaviors of Hypoxia-Stimulated Fibroblast-Like Synoviocytes and Alleviates Collagen-Induced Arthritis in Rats via Inhibiting Sonic Hedgehog Pathway.
Synovial hypoxia-inducible factor 1α (HIF-1α) is a prospective therapeutic target for rheumatoid arthritis (RA). AMSP-30 m, a novel HIF-1α inhibitor, was reported to have notable anti-arthritic effects in rats with adjuvant-induced arthritis. However, its roles in inhibiting the pathogenic behaviors of fibroblast-like synoviocytes (FLS) and the involved mechanisms remain unknown. Here, AMSP-30 m inhibited proliferation and induced apoptosis in hypoxia-induced RA FLS (MH7A cell line), as evidenced by decreased cell viability, reduced Ki67-positive cells, G0/G1 phase arrest, lowered C-myc and Cyclin D1 protein levels, emergence of apoptotic nuclear fragmentation, raised apoptosis rates, and activation of caspase 3. Furthermore, AMSP-30 m prevented hypoxia-induced increases in pro-inflammatory factor production, MMP-2 activity, migration index, migrated/invasive cells, and actin cytoskeletal rearrangement. In vivo, AMSP-30 m alleviated the severity of rat collagen-induced arthritis (CIA). Mechanically, AMSP-30 m reduced HIF-1α expression and blocked sonic hedgehog (Shh) pathway activation in hypoxia-induced MH7A cells and CIA rat synovium, as shown by declines in pathway-related proteins (Shh, Smo, and Gli-1). Particularly, the combination of Shh pathway inhibitor cyclopamine enhanced AMSP-30 m's inhibitory effects on the pathogenic behaviors of hypoxia-stimulated MH7A cells, whereas the combination of Shh pathway activator SAG canceled AMSP-30 m's therapeutic effects in vitro and in CIA rats, implying a close involvement of Shh pathway inhibition in its anti-arthritic effects. We likewise confirmed AMSP-30 m's anti-proliferative role in hypoxia-induced primary CIA FLS. Totally, AMSP-30 m suppressed hypoxia-induced proliferation, inflammation, migration, and invasion of MH7A cells and ameliorated the severity of rat CIA via inhibiting Shh signaling.
Cai L
,Meng B
,Jiang F
,Shu WH
,Wang XH
,Wang MQ
,Wu XJ
,Hu MW
,Yang YC
,Ran X
,Li R
... -
《-》
-
AMSP-30 m as a novel HIF-1α inhibitor attenuates the development and severity of adjuvant-induced arthritis in rats: Impacts on synovial apoptosis, synovial angiogenesis and sonic hedgehog signaling pathway.
Growing evidence indicates that synovial hypoxia-inducible factor 1α (HIF-1α) can be as a promising target for RA therapy. We previously reported that AMSP-30 m as a novel HIF-1α inhibitor had potent activities of anticancer metastasis. This study clarified the therapeutic effects of HIF-1α inhibitor AMSP-30 m on adjuvant-induced arthritis (AIA) in rats and explored the possible mechanisms. AMSP-30 m was given intraperitoneally to AIA rats, and its therapeutic effects and anti-inflammatory activity were evaluated. The influences of AMSP-30 m on synovial apoptosis, angiogenesis and sonic hedgehog (Shh) pathway were examined. We found that, accompanied with the inhibition of synovial HIF-1α expression, AMSP-30 m had potent anti-arthritic and anti-inflammatory effects on AIA rats, evidenced by the reduction in paw swelling, arthritis index, histopathological scores, and the production of IL-1β, IL-6, TNF-α in serum and synovial tissues. AMSP-30 m reduced synovial Ki67 expression and increased TUNEL-positive index, indicating its anti-proliferative and pro-apoptotic effects on AIA synovial cells, which was related to reducing Bcl-2 protein level and increasing Bax, cleaved caspase 3 protein levels. Additionally, AMSP-30 m showed anti-angiogenic effects within AIA synovium, indicated by the reduction of synovial VEGF expression and blood vessels number (especially CD31+/αSMA- immature vessels, but not CD31+/αSMA+ mature vessels). Moreover, AMSP-30 m inhibited the activation of synovial Shh pathway, suggested by the reduction of pathway-related proteins, like Shh, Smo, Gli-1, cyclin D1 and c-Myc. Collectively, HIF-1α inhibitor AMSP-30 m exerted potent anti-arthritic effects on AIA rats possibly by promoting synovial apoptosis, reducing synovial angiogenesis and inhibiting Shh pathway.
Meng B
,Liu FY
,Liu MM
,Yu LC
,Zhang WT
,Zhou MY
,Liu SY
,Li R
,Cai L
... -
《-》
-
Therapeutic effects of shikonin on adjuvant-induced arthritis in rats and cellular inflammation, migration and invasion of rheumatoid fibroblast-like synoviocytes via blocking the activation of Wnt/β-catenin pathway.
Shikonin (SKN), the main bioactive component isolated from Lithospermum erythrorhizon Sieb et Zucc, has multiple activities including anti-rheumatic effect, but its specific roles and the precise mechanisms in regulating biological properties of rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) are unclear and need further clarification.
This study explored the therapeutic roles of SKN on rat adjuvant-induced arthritis (AIA) and cellular inflammation, migration and invasion of TNF-α-induced RA FLS (MH7A cells), and further demonstrated the involved mechanisms.
SKN was intraperitoneally given to AIA rats and its therapeutic role was valued. The effects of SKN in vivo and in vitro on the production of pro-inflammatory factors were examined by ELISA and western blot. Wound-healing, transwell and phalloidin staining assay were carried out to evaluate the effects of SKN on TNF-α-induced migration and invasion in RA FLS. The involvement of Wnt/β-catenin pathway was checked by immunohistochemistry or immunofluorescence assay for β-catenin and western blot for pathway-related proteins.
SKN treatment in AIA rats reduced paw swelling, arthritis index and pathological damage of ankle joints, indicating its anti-arthritic effect in vivo. SKN had anti-inflammatory roles in vivo and in vitro, evidenced by inhibiting the production of pro-inflammatory factors (like IL-1β, IL-6, IL-8, TNF-α, MMP-2 and MMP-9) in sera and synovium of AIA rats, and in TNF-α-induced MH7A cells. Gelatin zymography result revealed the suppression of SKN on TNF-α-induced MMP-2 activity in vitro. Moreover, SKN inhibited TNF-α-induced migration, invasion and cytoskeletal reorganization in MH7A cells. Mechanistically, SKN suppressed the activation of Wnt/β-catenin signaling in AIA rat synovium and in TNF-α-induced MH7A cells, indicated by the reduced protein levels of Wnt1, p-GSK-3β (Ser9) and β-catenin, the raised protein level of GSK-3β and the decreased nuclear translocation of β-catenin. Interestingly, the combination of LiCl (Wnt/β-catenin agonist) canceled the therapeutic functions of SKN on cellular inflammation, migration and invasion in TNF-α-induced MH7A cells, whereas XAV939 (Wnt/β-catenin inhibitor) enhanced the therapeutic roles of SKN.
SKN showed therapeutic effects on rat AIA and cellular inflammation, migration and invasion of TNF-α-stimulated RA FLS via interrupting Wnt/β-catenin pathway.
Liu FY
,Wang MQ
,Liu MM
,Li T
,Wang XH
,Jiang F
,Wu XJ
,Cheng J
,Cai L
,Li R
... -
《-》
-
7-Hydroxycoumarin mitigates the severity of collagen-induced arthritis in rats by inhibiting proliferation and inducing apoptosis of fibroblast-like synoviocytes via suppression of Wnt/β-catenin signaling pathway.
7-Hydroxycoumarin (7-HC) as a coumarin compound is widely found in Chinese herbs and exhibits diverse biological activities. Promoting cell apoptosis of fibroblast-like synoviocytes (FLS) is a meaningful strategy for rheumatoid arthritis (RA). Though the protective effect of 7-HC on RA experimental models has been reported, the specific mechanisms, especially the possible relationships of this effect to regulating FLS proliferation and apoptosis, still need clarification.
This study clarified the therapeutic effects of 7-HC on collagen-induced arthritis (CIA) in rats and explored the underlying mechanisms.
In vivo, 7-HC (15, 30 or 60 mg/kg) was intraperitoneally given to CIA rats, and its therapeutic effect and anti-inflammatory activity were evaluated. Ki67 immunohistochemistry, TUNEL assay and synovial proteins detection were conducted. In vitro, after treating with 7-HC (20, 40 or 80 μM) in TNF-α-stimulated RA FLS (MH7A cell line), cell proliferation and apoptosis were examined. The involvement of Wnt/β-catenin pathway was checked in vivo and in vitro.
7-HC attenuated the severity of rat CIA, evidenced by the reduction of paw swelling, arthritis index, joint damage, collagen type II antibody serum level, and IL-1β, IL-6, TNF-α production in serum and synovium. Particularly, 7-HC in vivo had anti-proliferative and pro-apoptotic effects on CIA rat synovial cells, indicated by reduced synovial Ki67 expression, raised synovial apoptosis index, decreased Bcl-2 protein level and increased level of Bax and cleaved caspase 3 protein. Further, 7-HC in vitro suppressed proliferation and promoted apoptosis of TNF-α-stimulated MH7A cells by regulating the mitochondrial pathway. Mechanistically, 7-HC treatment inhibited Wnt/β-catenin pathway, suggested by the reduction of pathway-related proteins (e.g. Wnt1, LRP6, p-GSK-3β (Ser9), β-catenin, cyclin D1 and c-Myc), the recovery of GSK-3β activity and the inhibition of β-catenin nuclear translocation. As expected, combined use of lithium chloride, an activator of Wnt/β-catenin signaling, reversed the anti-proliferative and pro-apoptotic effects of 7-HC in vitro.
7-HC relieved the severity of rat CIA by inhibiting cell proliferation and inducing apoptosis of rheumatoid FLS via inhibition of Wnt/β-catenin pathway.
Cai L
,Zong P
,Zhou MY
,Liu FY
,Meng B
,Liu MM
,Li Z
,Li R
... -
《-》
-
A novel mechanism for inhibiting proliferation of rheumatoid arthritis fibroblast-like synoviocytes: geniposide suppresses HIF-1α accumulation in the hypoxic microenvironment of synovium.
The excessive proliferation of fibroblast-like synoviocytes (FLSs) is a key inducement for the occurrence and development of rheumatoid arthritis (RA). Hypoxia inducible factor-α (HIF-α) accumulation is involved in the regulation of cell biological functions in the hypoxic microenvironment of synovium. This study aimed to investigate the roles of HIF-α and its level regulator prolyl hydroxylases (PHDs) in FLSs proliferation and to explore the regulatory effect of geniposide (GE).
Adjuvant arthritis rats and RA-FLSs cell line MH7A were taken as the research objects. MH7A cells were incubated in a hypoxic chamber with 2% O2 for hypoxia treatment. CCK-8, FACS, EdU and Western blot assays were performed to evaluate MH7A cells proliferation. Iron assay was conducted to determine intracellular Fe2+ level.
MH7A cells proliferation was significantly enhanced under hypoxia, accompanied by an increase of HIF-1α level. Decreased HIF-1α level by PX-478 inhibited MH7A cells proliferation. Furthermore, PHD2 was highly expressed in vivo and in vitro, and played a key role in modulation of HIF-1α protein level, which was confirmed by PHD2 inhibitor IOX4 and proteasome inhibitor MG132. GE treatment alleviated synovial hyperplasia in AA rats and inhibited MH7A cells proliferation with a reduction in HIF-1α level. Fe2+ acts as an enzymatic cofactor to control PHD2 activity. Iron assay showed that GE reversed the decline of Fe2+ level in MH7A cells under hypoxia.
GE attenuates abnormal proliferation of RA-FLSs via inhibiting HIF-1α accumulation through enhancement of PHD2 activity.
Gan P
,Sun M
,Wu H
,Ke J
,Dong X
,Chen F
... -
《-》