-
Comprehensive analysis of cuproptosis-related lncRNAs signature to predict prognosis in bladder urothelial carcinoma.
Cuproptosis-related genes (CRGs) have been recently discovered to regulate the occurrence and development of various tumors by controlling cuproptosis, a novel type of copper ion-dependent cell death. Although cuproptosis is mediated by lipoylated tricarboxylic acid cycle proteins, the relationship between cuproptosis-related long noncoding RNAs (crlncRNAs) in bladder urothelial carcinoma (BLCA) and clinical outcomes, tumor microenvironment (TME) modification, and immunotherapy remains unknown. In this paper, we tried to discover the importance of lncRNAs for BLCA.
The BLCA-related lncRNAs and clinical data were first obtained from The Cancer Genome Atlas (TCGA). CRGs were obtained through Coexpression, Cox regression and Lasso regression. Besides, a prognosis model was established for verification. Meanwhile, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, gene ontology (GO) analysis, principal component analysis (PCA), half-maximal inhibitory concentration prediction (IC50), immune status and drug susceptibility analysis were carried out.
We identified 277 crlncRNAs and 16 survival-related lncRNAs. According to the 8-crlncRNA risk model, patients could be divided into high-risk group and low-risk group. Progression-Free-Survival (PFS), independent prognostic analysis, concordance index (C-index), receiver operating characteristic (ROC) curve and nomogram all confirmed the excellent predictive capability of the 8-lncRNA risk model for BLCA. During gene mutation burden survival analysis, noticeable differences were observed in high- and low-risk patients. We also found that the two groups of patients might respond differently to immune targets and anti-tumor drugs.
The nomogram with 8-lncRNA may help guide treatment of BLCA. More clinical studies are necessary to verify the nomogram.
Zhu S
,Li H
,Fan Y
,Tang C
... -
《BMC Urology》
-
Comprehensive analysis of cuproptosis-related long noncoding RNA immune infiltration and prediction of prognosis in patients with bladder cancer.
Background: Bladder cancer (BCa), among the world's most common malignant tumors in the urinary system, has a high morbidity and mortality. Though cuproptosis is a new type of cell death mediated by lipoylated tricarboxylic acid (TCA) cycle proteins, the role of cuproptosis-related long noncoding RNAs (crlncRNAs) in bladder tumors awaits further elucidation. In this paper, we tried to explore how important crlncRNAs are for BCa. Methods: The crlncRNAs were first obtained through Pearson correlation analysis of the RNA-seq data and corresponding clinical data downloaded from The Cancer Genome Atlas (TCGA). Then, three lncRNAs were acquired by Cox regression and Lasso regression to build a prognostic model of crlncRNAs for verification. In the meantime, clinicopathological correlation analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, principal component analysis (PCA), immunoassay, and half-maximal inhibitory concentration prediction (IC50) were carried out. Then, an entire tumor was classified into two clusters by crlncRNA expression to further discuss the differences in prognosis, immune status and drug susceptibility among different subgroups. Results: We obtained a total of 152 crlncRNAs and built a risk model for screened crlncRNAs. We validated the model and found that calibration charts feature a high consistency in verifying nomogram prediction. Receiver operating characteristic (ROC) curve and univariate and multivariate Cox regression suggested that this model can be applied as an independent prognostic factor of bladder cancer due to its high accuracy. According to KEGG analysis, high-risk groups were enriched in cancer and immune-related pathways. During tumor immunoassay, noticeable differences were observed in both immune infiltration and checkpoints between high- and low-risk patients. Of the two subgroups divided among patients by consensus clustering, cluster 2 had a better prognosis, whereas cluster 1 had higher immunoreactivity scores, more immune cell infiltrations and immune checkpoint expressions, and different sensitivities to drugs. Conclusion: The research findings demonstrate that crlncRNAs can be used to predict the prognosis and immune microenvironment of patients suffering from BCa, and differentiate between BCa subgroups to improve the individual therapy of BCa.
Zhang Y
,Li X
,Li X
,Zhao Y
,Zhou T
,Jiang X
,Wen Y
,Meng W
,Li S
... -
《Frontiers in Genetics》
-
A novel cuproptosis-related lncRNA signature predicts the prognosis and immune landscape in bladder cancer.
Bladder cancer (BLCA) is one of the deadliest diseases, with over 550,000 new cases and 170,000 deaths globally every year. Cuproptosis is a copper-triggered programmed cell death and is associated with the prognosis and immune response of various cancers. Long non-coding RNA (lncRNA) could serve as a prognostic biomarker and is involved in the progression of BLCA.
The gene expression profile of cuproptosis-related lncRNAs was analyzed by using data from The Cancer Genome Atlas. Cox regression analysis and least absolute shrinkage and selection operator analysis were performed to construct a cuproptosis-related lncRNA prognostic signature. The predictive performance of this signature was verified by ROC curves and a nomogram. We also explored the difference in immune-related activity, tumor mutation burden (TMB), tumor immune dysfunction and exclusion (TIDE), and drug sensitivity between the high- and low-risk groups.
We successfully constructed a cuproptosis-related lncRNA prognostic signature for BLCA including eight lncRNAs (RNF139-AS1, LINC00996, NR2F2-AS1, AL590428.1, SEC24B-AS1, AC006566.1, UBE2Q1-AS1, and AL021978.1). Multivariate Cox analysis suggested that age, clinical stage, and risk score were the independent risk factors for predicting prognosis of BLCA. Further analysis revealed that this signature not only had higher diagnostic efficiency compared to other clinical features but also had a good performance in predicting the 1-year, 3-year, and 5-year overall survival rate in BLCA. Notably, BLCA patients with a low risk score seemed to be associated with an inflamed tumor immune microenvironment and had a higher TMB level than those with a high risk score. In addition, patients with a high risk score had a higher TIDE score and a higher half maximal inhibitory concentration value of many therapeutic drugs than those with a low risk score.
We identified a novel cuproptosis-related lncRNA signature that could predict the prognosis and immune landscape of BLCA.
Bai Y
,Zhang Q
,Liu F
,Quan J
... -
《Frontiers in Immunology》
-
A Cuproptosis-Related LncRNA Risk Model for Predicting Prognosis and Immunotherapeutic Efficacy in Patients with Hepatocellular Carcinoma.
Cuproptosis is a novel programmed cell death pathway that is initiated by direct binding of copper to lipoylated tricarboxylic acid (TCA) cycle proteins. Recent studies have demonstrated that cuproptosis-related genes regulate tumorigenesis. However, the potential role and clinical significance of cuproptosis-related long noncoding RNAs (lncRNAs) in hepatocellular carcinoma (HCC) have not been established. We performed a bioinformatics analyses of RNA-sequencing data of HCC patients extracted from The Cancer Genome Atlas (TCGA) dataset to identify and validate a cuproptosis-related lncRNA prognostic signature. Furthermore, we analyzed the clinical significance of the prognostic signature of cuproptosis-related lncRNA in predicting the immunotherapeutic efficacy and the status of the tumor immune microenvironment. The RNA-sequencing data, genomic mutations, and clinical information were downloaded for 374 HCC samples and 50 normal liver samples from TCGA-Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset. Co-expression analysis of Gene-lncRNA pairs with 49 known cuproptosis-related prognostic genes was used to define cuproptosis-related prognostic lncRNAs. We performed the LASSO algorithm and univariate and multivariate Cox regression analysis, respectively, to gradually identify the prognostic risk models of cuproptosis-related lncRNA based on the TCGA-LIHC dataset. Subsequently, the predictive performance of the model was evaluated using receiver operation characteristic (ROC) curves, Kaplan-Meier survival curves, and prognostic nomogram. The analysis of gene-lncRNA co-expression with 49 known cuproptosis-related genes identified 1359 cuproptosis-related lncRNAs in the TCGA-LIHC data set. A prognostic model was constructed with nine cuproptosis-related prognostic lncRNAs (AC007998.3, AC003086.1, AC009974.2, IQCH-AS1, LINC0256 1, AC105345.1, ZFPM2-AS1, AL353708.1 and WAC-AS1) using LASSO regression and Cox regression analyses. Risk scores were calculated for all HCC patient samples based on the four cuproptosis-related lncRNA prognostic models. All HCC patients were divided into high-risk and low-risk subgroups according to a 1:1 ratio column. The Kaplan-Meier survival curve analysis showed that the overall survival rate (OS) of the high-risk group patients was significantly lower than that of the low-risk group. The principal component analysis (PCA) confirmed that the prognostic lncRNA model accurately distinguished between high- and low-risk HCC patients. Furthermore, regression analysis as well as ROC curves confirmed the prognostic value of the risk score. A nomogram with risk scores and other clinicopathological characteristics was constructed. The nomogram accurately predicted the probability of 1-, 3-, and 5-year OS in HCC patients. Tumor mutation burden (TMB) scores were higher for high-risk patients than for low-risk patients. HCC patients in the low-risk group showed lower TIDE scores and greater sensitivity to antitumor drugs than those in the high-risk group. Tumor immune responses and tumor immune cell infiltration were significantly different between the high-risk and low-risk groups of patients with HCC. Our study identified a 9-cuproptosis-related lncRNA signature that accurately predicted prognosis, immunotherapeutic efficacy, and the status of the tumor immune microenvironment in HCC patients. Therefore, this cuproptosis-related lncRNA risk model is a potential prognostic biometric feature in HCC and shows high clinical value in identifying HCC patients who are potentially responsive to immunotherapy.
Wang S
,Bai H
,Fei S
,Miao B
... -
《-》
-
A novel cuproptosis-related lncRNAs signature predicts prognostic and immune of bladder urothelial carcinoma.
Bladder Urothelial Carcinoma (BLCA) remains the most common urinary system tumor, and its prognosis is poor. Cuproptosis is a recently discovered novel cell death involved in the development of tumor cells. However, the use of cuproptosis to predict the prognosis and immunity of Bladder Urothelial Carcinoma remains largely unclear, and this study was designed to verify cuproptosis-related long non-coding RNAs (lncRNAs) to estimate the prognosis and immunity of Bladder Urothelial Carcinoma. In our study, we first defined the expression of cuproptosis-related genes (CRGs) in BLCA, and 10 CRGs were up- or downregulated. We then constructed a co-expression network of cuproptosis-related mRNA and long non-coding RNAs using RNA sequence data from The Cancer Genome Atlas Bladder Urothelial Carcinoma (TCGA-BLCA), clinical features and mutation data from BLCA patients to obtain long non-coding RNAs by Pearson analysis. Afterward, univariate and multivariate COX analysis identified 21 long non-coding RNAs as independent prognostic factors and used these long non-coding RNAs to construct a prognostic model. Then, survival analysis, principal component analysis (PCA), immunoassay, and comparison of tumor mutation frequencies were performed to verify the accuracy of the constructed model, and GO and KEGG functional enrichment analysis was used to verify further whether cuproptosis-related long non-coding RNAs were associated with biological pathways. The results showed that the model constructed with cuproptosis-related long non-coding RNAs could effectively evaluate the prognosis of BLCA, and these long non-coding RNAs were involved in numerous biological pathways. Finally, we performed immune infiltration, immune checkpoint and drug sensitivity analyses on four genes (TTN, ARID1A, KDM6A, RB1) that were highly mutated in the high-risk group to evaluate the immune association of risk genes with BLCA. In conclusion, the cuproptosis-related lncRNA markers constructed in this study have evaluation value for prognosis and immunity in BLCA, which can provide a certain reference for the treatment and immunity of BLCA.
Zhou Z
,Zhou Y
,Liu W
,Dai J
... -
《Frontiers in Genetics》