Identification of four-gene signature to diagnose osteoarthritis through bioinformatics and machine learning methods.
摘要:
Although osteoarthritis (OA) is one of the most prevalent joint disorders, effective biomarkers to diagnose OA are still unavailable. This study aimed to acquire some key synovial biomarkers (hub genes) and analyze their correlation with immune infiltration in OA. Gene expression profiles and clinical characteristics of OA and healthy synovial samples were retrieved from the Gene Expression Omnibus (GEO) database. Hub genes for OA were mined based on a combination of weighted gene co-expression network analysis (WGCNA), the least absolute shrinkage and selection operator (LASSO), support vector machine recursive feature elimination (SVM-RFE), and random forest (RF) algorithms. A diagnostic nomogram model for OA prediction was developed based on the hub genes. Receiver operating characteristic curves (ROC) were performed to confirm the abnormal expression of hub genes in the experimemtal and validation datasets. qRT-PCR using patients' samples were conducted as well. In addition, the infiltration level of 28 immune cells in the expression profile and their relationship with hub genes were analyzed using single-sample GSEA (ssGSEA). 4 hub genes (ZBTB16, TNFSF11, SCRG1 and KDELR3) were obtained by WGCNA, lasso, SVM-RFE, RF algorithms as potential biomarkers for OA. The immune infiltration analyses revealed that hub genes were most correlated with regulatory T cell and natural killer cell. A machine learning model to diagnose OA based on ZBTB16, TNFSF11, SCRG1 and KDELR3 using synovial tissue was constructed, providing theoretical foundation and guideline for diagnostic and treatment targets in OA.
收起
展开
DOI:
10.1016/j.cyto.2023.156300
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(456)
参考文献(0)
引证文献(3)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无