Identification of four-gene signature to diagnose osteoarthritis through bioinformatics and machine learning methods.

来自 PUBMED

作者:

Chen ZWang WZhang YXue XHua Y

展开

摘要:

Although osteoarthritis (OA) is one of the most prevalent joint disorders, effective biomarkers to diagnose OA are still unavailable. This study aimed to acquire some key synovial biomarkers (hub genes) and analyze their correlation with immune infiltration in OA. Gene expression profiles and clinical characteristics of OA and healthy synovial samples were retrieved from the Gene Expression Omnibus (GEO) database. Hub genes for OA were mined based on a combination of weighted gene co-expression network analysis (WGCNA), the least absolute shrinkage and selection operator (LASSO), support vector machine recursive feature elimination (SVM-RFE), and random forest (RF) algorithms. A diagnostic nomogram model for OA prediction was developed based on the hub genes. Receiver operating characteristic curves (ROC) were performed to confirm the abnormal expression of hub genes in the experimemtal and validation datasets. qRT-PCR using patients' samples were conducted as well. In addition, the infiltration level of 28 immune cells in the expression profile and their relationship with hub genes were analyzed using single-sample GSEA (ssGSEA). 4 hub genes (ZBTB16, TNFSF11, SCRG1 and KDELR3) were obtained by WGCNA, lasso, SVM-RFE, RF algorithms as potential biomarkers for OA. The immune infiltration analyses revealed that hub genes were most correlated with regulatory T cell and natural killer cell. A machine learning model to diagnose OA based on ZBTB16, TNFSF11, SCRG1 and KDELR3 using synovial tissue was constructed, providing theoretical foundation and guideline for diagnostic and treatment targets in OA.

收起

展开

DOI:

10.1016/j.cyto.2023.156300

被引量:

3

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(456)

参考文献(0)

引证文献(3)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读