Jiedu Tongluo Baoshen formula enhances podocyte autophagy and reduces proteinuria in diabetic kidney disease by inhibiting PI3K/Akt/mTOR signaling pathway.
Traditional Chinese medicine (TCM) has been applied to diabetic kidney disease (DKD). A large number of animal trials each year focus on TCM for DKD, but the evidence for these preclinical studies is not clear.
The aim of this study was to study the therapeutic effect of Jiedu Tongluo Baoshen formula (JTBF) on DKD proteinuria and renal protection. At the same time, it is verified that JTBF can reduce podocyte injury by enhancing autophagy function, and then achieve the effect of proteinuria.
We use high performance liquid chromatography to detect and analyze the fingerprint of JTBF to find the chemical composition. Subsequently, we constructed a DKD rat model induced by high-fat diet and streptozocin (HFD + STZ). Urine and blood biochemical automatic analyzer were used to detect 24-h urine protein quantification (24 h-UP) and renal function. The renal pathological changes were observed by H&E and transmission electron microscopy (TEM), and the levels of autophagy-related proteins and mRNA in podocytes were detected by immunohistochemistry, RT-qPCR and Western Blot. The chemical composition of JTBF was screened from traditional Chinese medicine systems pharmacol (TCMSP) and PubChem databases, and the potential targets and associated pathways of JTBF were predicted using kyoto encyclopedia of genes and genomes (KEGG) and protein-protein interaction (PPI) network analysis in network pharmacology, and confirmed in animal experiments and histopathological methods.
We discovered 77 active ingredients of JTBF. Through animal experiments, it was found that JTBF reduced 24 h-UP and promoted the expression of podocin, nephrin, and WT-1 in podocytes, thereby reducing podocyte damage. At the same time, JTBF activates the expression of podocyte autophagy-related proteins (beclin-1, LC3 and P62). Subsequently, through network pharmacology predictions, 208 compounds were obtained from JTBF, and phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) was a potential signal pathway. JTBF was obtained in DKD rat kidney tissue to inhibit the expression of PI3K, Akt and mTOR related proteins.
JTBF enhance podocyte autophagy to reduce podocyte damage, thereby effectively treating DKD proteinuria and protecting kidney function.
Jin D
,Liu F
,Yu M
,Zhao Y
,Yan G
,Xue J
,Sun Y
,Zhao D
,Li X
,Qi W
,Wang X
... -
《-》
Danshen injection induces autophagy in podocytes to alleviate nephrotic syndrome via the PI3K/AKT/mTOR pathway.
Danshen injection (DSI) is an agent extracted from the Salvia miltiorrhiza Bunge, a natural drug commonly used to alleviate kidney diseases. However, the material basis and therapeutic effects of DSI on nephrotic syndrome (NS) remain unclear.
To investigate the material basis of DSI and the therapeutic effects and underlying mechanisms of NS.
NS models were established using adriamycin-induced BALB/c mice and lipopolysaccharide-induced mouse podocytes (MPC-5). Following DSI and prednisone administration, kidney coefficients, 24 h urine protein, blood urea nitrogen, and serum creatinine levels were tested. Histomorphology was observed by periodic acid-Schiff staining and hematoxylin and eosin staining of the kidney sections. The glomerular basement membrane and autophagosomes of the kidneys were observed using transmission electron microscopy. Nephrin and desmin levels in the glomeruli were tested using immunohistochemistry. The viability of MPC-5 cells was tested using cell counting kit-8 after chloroquine and rapamycin administration in combination with DSI. The in vivo and in vitro protein levels of phosphatidylinositol 3-kinase (PI3K), AKT, phosphorylated AKT (Ser473), mammalian target of rapamycin (mTOR), microtubule-associated protein light chain 3 (LC3), beclin1, cleaved caspase-3, and caspase-3 were detected using western blotting.
Our results showed that DSI contained nine main components: caffeic acid, danshensu, lithospermic acid, rosmarinic acid, salvianolic acid A, salvianolic acid B, salvianolic acid C, salvianolic acid D, and 3, 4-Dihydroxybenzaldehyde. In in vivo studies, the NS mice showed renal function and pathological impairment. Podocytes were damaged, with decreased levels of autophagy and apoptosis, accompanied by inhibition of the PI3K/AKT/mTOR signaling. DSI administration resulted in improved renal function and pathology in NS mice, with the activation of autophagy and PI3K/AKT/mTOR signaling in the kidneys. Additionally, podocytes were less damaged and intracellular autophagosomes were markedly increased. In vitro studies have shown that DSI activated MPC-5 autophagy and reduced apoptosis via the PI3K/AKT/mTOR pathway.
Collectively, this study demonstrated that DSI activated podocyte autophagy and reduced apoptosis via the PI3K/AKT/mTOR signaling, ultimately attenuating NS. Our study clarified the main components of DSI and elucidated its therapeutic effects and potential mechanisms for NS, providing new targets and agents for the clinical treatment of NS.
Chen J
,Yuan S
,Zhou J
,Huang X
,Wu W
,Cao Y
,Liu H
,Hu Q
,Li X
,Guan X
,Yin S
,Jiang J
,Zhou Y
,Zhou J
... -
《-》
Paecilomyces cicadae-fermented Radix astragali activates podocyte autophagy by attenuating PI3K/AKT/mTOR pathways to protect against diabetic nephropathy in mice.
Radix astragali, a medicinal material for tonifying Chinese Qi, has widely been used for the treatment of Kidney disease in China and East Asia, especially in reducing the apoptosis of glomerular podocytes. Paecilomyces Cicadidae is a medicinal and edible fungus. In recent years, the application of traditional Chinese medicine (TCM) in solid-state fermentation of edible and medicinal fungi has become a hot issue. Fermentation is a special method to change the properties of TCM. Therefore, the potential roles and molecular mechanisms on podocytes of solid-state fermentation products of Radix astragali and Paecilomyces cicadidae (RPF) in diabetic nephropathy (DN) were studied. In vivo, the effect of RPF and Radix astragali on DN in mice was evaluated by detecting the biochemical indexes of blood and urine, renal function and podocyte integrity. In vitro, the expression of podocyte marker protein, autophagy marker protein and PI3K/AKT/mTOR signaling pathway protein were detected by Western blotting using a high glucose-induced podocyte injury model. The results showed that RPF had a significant alleviative effect on DN mice. RPF can significantly reduce urine protein, serum creatinine, and blood nitrogen urea in DN mice. Morphological analysis showed that RPF could improve kidney structure of DN and reduce the apoptosis of podocytes, and the effect was better than Radix astragali. In vitro results indicated that RPF could enhance autophagy and protect podocytes by inhibiting the PI3K/AKT/mTOR signaling pathway. In summary, RPF has better effect on delaying the development of DN than Radix astragali. RPF enhances autophagy in podocytes and delays DN probably by inhibiting the PI3K/AKT/mTOR signaling pathway.
Yang F
,Qu Q
,Zhao C
,Liu X
,Yang P
,Li Z
,Han L
,Shi X
... -
《-》