Effects of gut microbiota on omega-3-mediated ovary and metabolic benefits in polycystic ovary syndrome mice.

来自 PUBMED

作者:

Zhang HZheng LLi CJing JLi ZSun SXue TZhang KXue MCao COuyang LQian ZXu RHe ZMa RChen LYao B

展开

摘要:

Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disorder that frequently exhibits low-grade inflammation, pro-oxidant activity, and gut dysbiosis. PCOS has become one of the leading causes of female infertility worldwide. Recently, omega-3 polyunsaturated fatty acids (PUFAs) have been proven to benefit metabolic disorders in PCOS patients. However, its roles in the regulation of metabolic and endocrinal balances in PCOS pathophysiology are not clear. In the present study, we aimed to explore how omega-3 PUFAs alleviate ovarian dysfunction and insulin resistance in mice with dehydroepiandrosterone (DHEA)-induced PCOS by modulating the gut microbiota. We induced PCOS in female mice by injecting them with DHEA and then treated them with omega-3 PUFAs. 16S ribosomal DNA (rDNA) amplicon sequencing, fecal microbiota transplantation (FMT) and antibiotic treatment were used to evaluate the role of microbiota in the regulation of ovarian functions and insulin resistance (IR) by omega-3 PUFAs. To further investigate the mechanism of gut microbiota on omega-3-mediated ovarian and metabolic protective effects, inflammatory and oxidative stress markers in ovaries and thermogenic markers in subcutaneous and brown adipose tissues were investigated. We found that oral supplementation with omega-3 PUFAs ameliorates the PCOS phenotype. 16S rDNA analysis revealed that omega-3 PUFA treatment increased the abundance of beneficial bacteria in the gut, thereby alleviating DHEA-induced gut dysbiosis. Antibiotic treatment and FMT experiments further demonstrated that the mechanisms underlying omega-3 benefits likely involve direct effects on the ovary to inhibit inflammatory cytokines such as IL-1β, TNF-α and IL-18. In addition, the gut microbiota played a key role in the improvement of adipose tissue morphology and function by decreasing multilocular cells and thermogenic markers such as Ucp1, Pgc1a, Cited and Cox8b within the subcutaneous adipose tissues. These findings indicate that omega-3 PUFAs ameliorate androgen-induced gut microbiota dysbiosis. The gut microbiota plays a key role in the regulation of omega-3-mediated IR protective effects in polycystic ovary syndrome mice. Moreover, omega-3 PUFA-regulated improvements in the ovarian dysfunction associated with PCOS likely involve direct effects on the ovary to inhibit inflammation. Our findings suggest that omega-3 supplementation may be a promising therapeutic approach for the treatment of PCOS by modulating gut microbiota and alleviating ovarian dysfunction and insulin resistance.

收起

展开

DOI:

10.1186/s13048-023-01227-w

被引量:

4

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(342)

参考文献(66)

引证文献(4)

来源期刊

Journal of Ovarian Research

影响因子:5.5

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读