Applications of artificial intelligence in magnetic resonance imaging of primary pediatric cancers: a scoping review and CLAIM score assessment.
To review the uses of AI for magnetic resonance (MR) imaging assessment of primary pediatric cancer and identify common literature topics and knowledge gaps. To assess the adherence of the existing literature to the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) guidelines.
A scoping literature search using MEDLINE, EMBASE and Cochrane databases was performed, including studies of > 10 subjects with a mean age of < 21 years. Relevant data were summarized into three categories based on AI application: detection, characterization, treatment and monitoring. Readers independently scored each study using CLAIM guidelines, and inter-rater reproducibility was assessed using intraclass correlation coefficients.
Twenty-one studies were included. The most common AI application for pediatric cancer MR imaging was pediatric tumor diagnosis and detection (13/21 [62%] studies). The most commonly studied tumor was posterior fossa tumors (14 [67%] studies). Knowledge gaps included a lack of research in AI-driven tumor staging (0/21 [0%] studies), imaging genomics (1/21 [5%] studies), and tumor segmentation (2/21 [10%] studies). Adherence to CLAIM guidelines was moderate in primary studies, with an average (range) of 55% (34%-73%) CLAIM items reported. Adherence has improved over time based on publication year.
The literature surrounding AI applications of MR imaging in pediatric cancers is limited. The existing literature shows moderate adherence to CLAIM guidelines, suggesting that better adherence is required for future studies.
Tsang B
,Gupta A
,Takahashi MS
,Baffi H
,Ola T
,Doria AS
... -
《-》
Artificial intelligence for breast cancer detection and its health technology assessment: A scoping review.
Recent healthcare advancements highlight the potential of Artificial Intelligence (AI) - and especially, among its subfields, Machine Learning (ML) - in enhancing Breast Cancer (BC) clinical care, leading to improved patient outcomes and increased radiologists' efficiency. While medical imaging techniques have significantly contributed to BC detection and diagnosis, their synergy with AI algorithms has consistently demonstrated superior diagnostic accuracy, reduced False Positives (FPs), and enabled personalized treatment strategies. Despite the burgeoning enthusiasm for leveraging AI for early and effective BC clinical care, its widespread integration into clinical practice is yet to be realized, and the evaluation of AI-based health technologies in terms of health and economic outcomes remains an ongoing endeavor.
This scoping review aims to investigate AI (and especially ML) applications that have been implemented and evaluated across diverse clinical tasks or decisions in breast imaging and to explore the current state of evidence concerning the assessment of AI-based technologies for BC clinical care within the context of Health Technology Assessment (HTA).
We conducted a systematic literature search following the Preferred Reporting Items for Systematic review and Meta-Analysis Protocols (PRISMA-P) checklist in PubMed and Scopus to identify relevant studies on AI (and particularly ML) applications in BC detection and diagnosis. We limited our search to studies published from January 2015 to October 2023. The Minimum Information about CLinical Artificial Intelligence Modeling (MI-CLAIM) checklist was used to assess the quality of AI algorithms development, evaluation, and reporting quality in the reviewed articles. The HTA Core Model® was also used to analyze the comprehensiveness, robustness, and reliability of the reported results and evidence in AI-systems' evaluations to ensure rigorous assessment of AI systems' utility and cost-effectiveness in clinical practice.
Of the 1652 initially identified articles, 104 were deemed eligible for inclusion in the review. Most studies examined the clinical effectiveness of AI-based systems (78.84%, n= 82), with one study focusing on safety in clinical settings, and 13.46% (n=14) focusing on patients' benefits. Of the studies, 31.73% (n=33) were ethically approved to be carried out in clinical practice, whereas 25% (n=26) evaluated AI systems legally approved for clinical use. Notably, none of the studies addressed the organizational implications of AI systems in clinical practice. Of the 104 studies, only two of them focused on cost-effectiveness analysis, and were analyzed separately. The average percentage scores for the first 102 AI-based studies' quality assessment based on the MI-CLAIM checklist criteria were 84.12%, 83.92%, 83.98%, 74.51%, and 14.7% for study design, data and optimization, model performance, model examination, and reproducibility, respectively. Notably, 20.59% (n=21) of these studies relied on large-scale representative real-world breast screening datasets, with only 10.78% (n =11) studies demonstrating the robustness and generalizability of the evaluated AI systems.
In bridging the gap between cutting-edge developments and seamless integration of AI systems into clinical workflows, persistent challenges encompass data quality and availability, ethical and legal considerations, robustness and trustworthiness, scalability, and alignment with existing radiologists' workflow. These hurdles impede the synthesis of comprehensive, robust, and reliable evidence to substantiate these systems' clinical utility, relevance, and cost-effectiveness in real-world clinical workflows. Consequently, evaluating AI-based health technologies through established HTA methodologies becomes complicated. We also highlight potential significant influences on AI systems' effectiveness of various factors, such as operational dynamics, organizational structure, the application context of AI systems, and practices in breast screening or examination reading of AI support tools in radiology. Furthermore, we emphasize substantial reciprocal influences on decision-making processes between AI systems and radiologists. Thus, we advocate for an adapted assessment framework specifically designed to address these potential influences on AI systems' effectiveness, mainly addressing system-level transformative implications for AI systems rather than focusing solely on technical performance and task-level evaluations.
Uwimana A
,Gnecco G
,Riccaboni M
《-》
Artificial Intelligence in Rehabilitation Targeting the Participation of Children and Youth With Disabilities: Scoping Review.
In the last decade, there has been a rapid increase in research on the use of artificial intelligence (AI) to improve child and youth participation in daily life activities, which is a key rehabilitation outcome. However, existing reviews place variable focus on participation, are narrow in scope, and are restricted to select diagnoses, hindering interpretability regarding the existing scope of AI applications that target the participation of children and youth in a pediatric rehabilitation setting.
The aim of this scoping review is to examine how AI is integrated into pediatric rehabilitation interventions targeting the participation of children and youth with disabilities or other diagnosed health conditions in valued activities.
We conducted a comprehensive literature search using established Applied Health Sciences and Computer Science databases. Two independent researchers screened and selected the studies based on a systematic procedure. Inclusion criteria were as follows: participation was an explicit study aim or outcome or the targeted focus of the AI application; AI was applied as part of the provided and tested intervention; children or youth with a disability or other diagnosed health conditions were the focus of either the study or AI application or both; and the study was published in English. Data were mapped according to the types of AI, the mode of delivery, the type of personalization, and whether the intervention addressed individual goal-setting.
The literature search identified 3029 documents, of which 94 met the inclusion criteria. Most of the included studies used multiple applications of AI with the highest prevalence of robotics (72/94, 77%) and human-machine interaction (51/94, 54%). Regarding mode of delivery, most of the included studies described an intervention delivered in-person (84/94, 89%), and only 11% (10/94) were delivered remotely. Most interventions were tailored to groups of individuals (93/94, 99%). Only 1% (1/94) of interventions was tailored to patients' individually reported participation needs, and only one intervention (1/94, 1%) described individual goal-setting as part of their therapy process or intervention planning.
There is an increasing amount of research on interventions using AI to target the participation of children and youth with disabilities or other diagnosed health conditions, supporting the potential of using AI in pediatric rehabilitation. On the basis of our results, 3 major gaps for further research and development were identified: a lack of remotely delivered participation-focused interventions using AI; a lack of individual goal-setting integrated in interventions; and a lack of interventions tailored to individually reported participation needs of children, youth, or families.
Kaelin VC
,Valizadeh M
,Salgado Z
,Parde N
,Khetani MA
... -
《-》
Use of Artificial Intelligence in the Identification and Diagnosis of Frailty Syndrome in Older Adults: Scoping Review.
Frailty syndrome (FS) is one of the most common noncommunicable diseases, which is associated with lower physical and mental capacities in older adults. FS diagnosis is mostly focused on biological variables; however, it is likely that this diagnosis could fail owing to the high biological variability in this syndrome. Therefore, artificial intelligence (AI) could be a potential strategy to identify and diagnose this complex and multifactorial geriatric syndrome.
The objective of this scoping review was to analyze the existing scientific evidence on the use of AI for the identification and diagnosis of FS in older adults, as well as to identify which model provides enhanced accuracy, sensitivity, specificity, and area under the curve (AUC).
A search was conducted using PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines on various databases: PubMed, Web of Science, Scopus, and Google Scholar. The search strategy followed Population/Problem, Intervention, Comparison, and Outcome (PICO) criteria with the population being older adults; intervention being AI; comparison being compared or not to other diagnostic methods; and outcome being FS with reported sensitivity, specificity, accuracy, or AUC values. The results were synthesized through information extraction and are presented in tables.
We identified 26 studies that met the inclusion criteria, 6 of which had a data set over 2000 and 3 with data sets below 100. Machine learning was the most widely used type of AI, employed in 18 studies. Moreover, of the 26 included studies, 9 used clinical data, with clinical histories being the most frequently used data type in this category. The remaining 17 studies used nonclinical data, most frequently involving activity monitoring using an inertial sensor in clinical and nonclinical contexts. Regarding the performance of each AI model, 10 studies achieved a value of precision, sensitivity, specificity, or AUC ≥90.
The findings of this scoping review clarify the overall status of recent studies using AI to identify and diagnose FS. Moreover, the findings show that the combined use of AI using clinical data along with nonclinical information such as the kinematics of inertial sensors that monitor activities in a nonclinical context could be an appropriate tool for the identification and diagnosis of FS. Nevertheless, some possible limitations of the evidence included in the review could be small sample sizes, heterogeneity of study designs, and lack of standardization in the AI models and diagnostic criteria used across studies. Future research is needed to validate AI systems with diverse data sources for diagnosing FS. AI should be used as a decision support tool for identifying FS, with data quality and privacy addressed, and the tool should be regularly monitored for performance after being integrated in clinical practice.
Velazquez-Diaz D
,Arco JE
,Ortiz A
,Pérez-Cabezas V
,Lucena-Anton D
,Moral-Munoz JA
,Galán-Mercant A
... -
《JOURNAL OF MEDICAL INTERNET RESEARCH》