Patient-derived Organoid Model for Predicting the Chemoresponse in Patients With Colorectal Cancer.

来自 PUBMED

作者:

Yi KPark SHKim DUJeon DYLee HJSong GAJo HJBaek DHHan JHLee BC

展开

摘要:

Cancer mortality has decreased due to the contribution of extensive research on cancer treatment, including chemotherapy, radiation, and immunotherapy. However, histopathologically similar tumors originating from the same organ are treated with identical or similar chemotherapeutic regimens regardless of patient characteristics or cancer subtypes. The aim of this study was to evaluate the utility of organoids in predicting responses to chemotherapeutic agents. This study retrospectively reviewed patient-derived organoids (PDOs) from 10 colorectal cancer patients to compare chemotherapy responses. Drug sensitivities for 5-fluorouracil (5-FU), cisplatin, oxaliplatin, and irinotecan were compared using GI50 (concentration that inhibits cancer cell growth by 50%). When organoids were treated with 5-FU, GI50 was the lowest compared to the other three chemotherapeutic agents (cisplatin, oxaliplatin, and irinotecan). The responsiveness to chemotherapeutic agents differed depending on specific patient characteristics including age, tumor location, stage, and gross type. The response of the patients' organoids to chemotherapeutic agents was consistent with the response to chemotherapy actually performed in those patients with cancer recurrence after surgery. PDOs may be useful as a preclinical model in predicting chemotherapy responses in cancer patients.

收起

展开

DOI:

10.21873/invivo.13263

被引量:

1

年份:

2023

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(117)

参考文献(23)

引证文献(1)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读