Human Rotator Cuff Tears Reveal an Age-Dependent Increase in Markers of Cellular Senescence and Selective Removal of Senescent Cells With Dasatinib + Quercetin Increases Genetic Expression of COL1A1 In Vitro.
摘要:
To quantify cellular senescence in supraspinatus tendon and subacromial bursa of humans with rotator cuff tears and to investigate the in vitro efficacy of the senolytic dasatinib + quercetin (D+Q) to eliminate senescent cells and alter tenogenic differentiation. Tissue was harvested from 41 patients (mean age, 62 years) undergoing arthroscopic rotator cuff repairs. In part 1 (n = 35), senescence was quantified using immunohistochemistry and gene expression for senescent cell markers (p16 and p21) and the senescence-associated secretory phenotype (SASP) (interleukin [IL] 6, IL-8, matrix metalloproteinase [MMP] 3, monocyte chemoattractant protein [MCP] 1). Senescence was compared between patients <60 and ≥60 years old. In part 2 (n = 6) , an in vitro model of rotator cuff tears was treated with D+Q or control. D+Q, a chemotherapeutic and plant flavanol, respectively, kill senescent cells. Gene expression analysis assessed the ability of D+Q to kill senescent cells and alter markers of tenogenic differentiation. Part 1 revealed an age-dependent significant increase in the relative expression of p21, IL-6, and IL-8 in tendon and p21, p16, IL-6, IL-8, and MMP-3 in bursa (P < .05). A significant increase was seen in immunohistochemical staining of bursa p21 (P = .028). In part 2, D+Q significantly decreased expression of p21, IL-6, and IL-8 in tendon and p21 and IL-8 in bursa (P < .05). Enzyme-linked immunosorbent assay analysis showed decreased release of the SASP (IL-6, MMP-3, MCP-1; P = .002, P = .024, P < .001, respectively). Tendon (P = .022) and bursa (P = .027) treated with D+Q increased the expression of COL1A1. While there was an age-dependent increase in markers of cellular senescence, this relationship was not consistently seen across all markers and tissues. Dasatinib + quercetin had moderate efficacy in decreasing senescence in these tissues and increasing COL1A1 expression. This study reveals that cellular senescence may be a therapeutic target to alter the biological aging of rotator cuffs and identifies D+Q as a potential therapy.
收起
展开
DOI:
10.1016/j.arthro.2023.05.036
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(100)
参考文献(45)
引证文献(2)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无