Cerebellin-2 promotes endothelial-mesenchymal transition in hypoxic pulmonary hypertension rats by activating NF-κB/HIF-1α/Twist1 pathway.

来自 PUBMED

作者:

Wang ELZhang JJLuo FMFu MYLi DPeng JLiu B

展开

摘要:

Endothelial-mesenchymal transition (EndMT) is one of the critical factors leading to vascular remodeling in pulmonary hypertension (PH). Recent studies found that the expression of Cerebellin-2 (CBLN2) is significantly increased in the lung tissue of patients with PH, suggesting that CBLN2 may be closely related to the development of PH. This study aims to investigate the role and potential mechanism of CBLN2 in the hypoxia-induced EndMT of PH rats. Hypoxia-induced PH rat model or EndMT cell model was constructed to investigate the role of CBLN2 in the process of endothelial mesenchymal transition during PH. The effects of CBLN2 siRNA, KC7F2 (HIF-1α inhibitor), and PDTC (NF-κB inhibitor) on hypoxia-induced EndMT were observed to evaluate the potential mechanism of CBLN2 in promoting EndMT. The right ventricular systolic pressure and pulmonary vascular remodeling index in hypoxia-treated rats were significantly increased. The transformation of endothelial cells (marked by CD31) to mesenchymal cells (marked by α-SMA) can be observed in the pulmonary vessels of PH rats, and the expression of CBLN2 in the intima was also significantly up-regulated. In the hypoxia-induced HPAECs, endothelial cell markers such as VE-cadherin and CD31 expression were significantly down-regulated, while mesenchymal-like cell markers such as α-SMA and vimentin were increased considerably, along with the increased expressions of CBLN2, p-p65, HIF-1α, and Twist1; CBLN2 siRNA, PDTC, and KC7F2 could inhibit those phenomena. CBLN2 can promote EndMT by activating NF-κB/HIF-1α/Twist1 pathway. Therefore, CBLN2 may be a new therapeutic target for PH.

收起

展开

DOI:

10.1016/j.lfs.2023.121879

被引量:

2

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(134)

参考文献(0)

引证文献(2)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读