Utility of BRAF V600E immunohistochemistry in the diagnosis of mandibular ameloblastomas.

来自 PUBMED

作者:

Ji YDJohnson DNFaquin WCPeacock ZS

展开

摘要:

Ameloblastoma, odontogenic keratocyst (OKC), and dentigerous cyst (DC) can have similar radiographic and histological appearances. The purpose of this study was to determine the utility of BRAF immunohistochemistry in discerning mandibular ameloblastomas from OKCs and DCs. This retrospective cohort study included patients treated between 1998 and 2018. Inclusion criteria include incisional biopsy-proven mandibular ameloblastoma, OKC, or DC, and sufficient tissue for immunohistochemistry. The primary predictor variable was the type of lesion. The primary outcome variable was the presence/absence of BRAF V600E immunoreactivity. The cohort consisted of 43 patients (19 female, 24 male; mean age 48 ± 17 years). There were 22 ameloblastomas, 11 OKCs, and 10 DCs. Among ameloblastomas, 68.2% (15/22) stained positive for BRAF V600E; no OKC or DC was positive (P < 0.001). By subtype, the majority of the follicular (83.3%), unicystic (83.3%), desmoplastic (66.7%), and acanthomatous (100%) subtypes were positive, but only 33.3% of the plexiform subtype were positive. BRAF immunohistochemistry may be a useful adjunct in the differentiation of ameloblastoma from OKCs and DCs on incisional biopsies. It may be particularly useful for small samples with a prominent cystic component or equivocal histopathology. Mandibular lesions that are BRAF immunohistochemistry positive are unlikely to be DCs or OKCs.

收起

展开

DOI:

10.1016/j.ijom.2023.06.001

被引量:

1

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(127)

参考文献(0)

引证文献(1)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读