Mitochondrial DNA induces nucleus pulposus cell pyroptosis via the TLR9-NF-κB-NLRP3 axis.
摘要:
Nucleus pulposus cell (NPC) death and progressive reduction play important roles in intervertebral disc degeneration (IVDD). As part of a damage-associated molecular pattern, mitochondrial DNA (mtDNA) can be recognized by TLR9 and triggers the expression of NF-κB and NLRP3 inflammasomes, inducing pyroptosis and inflammatory response. However, whether mtDNA induces NPC pyroptosis via the TLR9-NF-κB-NLRP3 axis and promotes IVDD remains uncertain. We constructed an in vitro NPC oxidative stress injury model to clarify the mechanism of mtDNA release, TLR9-NF-κB signaling pathway activation, and NPC injury. We further verified the mechanism of action underlying the inhibition of mtDNA release or TLR9 activation in NPC injury in vitro. We then constructed a rat punctured IVDD model to understand the mechanism inhibiting mtDNA release and TLR9 activation in IVDD. We used human NP specimen assays to show that the expression levels of TLR9, NF-κB, and NLRP3 inflammasomes correlated with the degree of IVDD. We demonstrated that mtDNA mediated TLR9-NF-κB-NLRP3 axis activation in oxidative stress-induced human NPC pyroptosis in vitro. Oxidative stress can damage the mitochondria of NPCs, causing the opening of the mitochondrial permeability transition pores (mPTP) and leading to the release of mtDNA into the cytosol. Furthermore, inhibition of mPTP opening or TLR9 activation blocked TLR9-NF-κB-NLRP3 axis activation and thereby mediated NPC pyroptosis and IVDD. mtDNA plays a key role in mediating NPC pyroptosis and IVDD via the TLR9-NF-κB-NLRP3 axis. Our findings provide new potential targets for IVDD.
收起
展开
DOI:
10.1186/s12967-023-04266-5
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(233)
参考文献(53)
引证文献(11)
来源期刊
影响因子:8.432
JCR分区: 暂无
中科院分区:暂无