-
Fenofibrate for diabetic retinopathy.
Diabetic retinopathy (DR) remains a major cause of sight loss worldwide, despite new therapies and improvements in the metabolic control of people living with diabetes. Therefore, DR creates a physical and psychological burden for people, and an economic burden for society. Preventing the development and progression of DR, or avoiding the occurrence of its sight-threatening complications is essential, and must be pursued to save sight. Fenofibrate may be a useful strategy to achieve this goal, by reversing diabetes' effects and reducing inflammation in the retina, as well as improving dyslipidaemia and hypertriglyceridaemia. OBJECTIVES: To investigate the benefits and harms of fenofibrate for preventing the development and progression of diabetic retinopathy in people with type 1 (T1D) or type 2 diabetes (T2D), compared with placebo or observation.
We searched CENTRAL, MEDLINE, Embase, and three trials registers (February 2022).
We included randomised controlled trials (RCTs) that included people with T1D or T2D, when these compared fenofibrate with placebo or with observation, and assessed the effect of fenofibrate on the development or progression of DR (or both).
We used standard Cochrane methods for data extraction and analysis. Our primary outcome was progression of DR, a composite outcome of 1) incidence of overt retinopathy for participants who did not have DR at baseline, or 2) advancing two or more steps on the Early Treatment Diabetic Retinopathy Study (ETDRS) severity scale for participants who had any DR at baseline (or both), based on the evaluation of stereoscopic or non-stereoscopic fundus photographs, during the follow-up period. Overt retinopathy was defined as the presence of any DR observed on stereoscopic or non-stereoscopic colour fundus photographs. Secondary outcomes included the incidence of overt retinopathy, reduction in visual acuity of participants with a reduction in visual acuity of 10 ETDRS letters or more, proliferative diabetic retinopathy, and diabetic macular oedema; mean vision-related quality of life, and serious adverse events of fenofibrate. We used GRADE to assess the certainty of evidence.
We included two studies and their eye sub-studies (15,313 participants) in people with T2D. The studies were conducted in the US, Canada, Australia, Finland, and New Zealand; follow-up period was four to five years. One was funded by the government, the other by industry. Compared to placebo or observation, fenofibrate likely results in little to no difference in progression of DR (risk ratio (RR) 0.86; 95% confidence interval (CI) 0.60 to 1.25; 1 study, 1012 participants; moderate-certainty evidence) in a population with and without overt retinopathy at baseline. Those without overt retinopathy at baseline showed little or no progression (RR 1.00, 95% CI 0.68 to 1.47; 1 study, 804 participants); those with overt retinopathy at baseline found that their DR progressed slowly (RR 0.21, 95% CI 0.06 to 0.71; 1 study, 208 people; test for interaction P = 0.02). Compared to placebo or observation, fenofibrate likely resulted in little to no difference in either the incidence of overt retinopathy (RR 0.91; 95% CI 0.76 to 1.09; 2 studies, 1631 participants; moderate-certainty evidence); or the incidence of diabetic macular oedema (RR 0.39; 95% CI 0.12 to 1.24; 1 study, 1012 participants; moderate-certainty evidence). The use of fenofibrate increased severe adverse effects (RR 1.55; 95% CI 1.05 to 2.27; 2 studies, 15,313 participants; high-certainty evidence). The studies did not report on incidence of a reduction in visual acuity of 10 ETDRS letters or more, incidence of proliferative diabetic retinopathy, or mean vision-related quality of life.
Current, moderate-certainty evidence suggests that in a mixed group of people with and without overt retinopathy, who live with T2D, fenofibrate likely results in little to no difference in progression of diabetic retinopathy. However, in people with overt retinopathy who live with T2D, fenofibrate likely reduces the progression. Serious adverse events were rare, but the risk of their occurrence was increased by the use of fenofibrate. There is no evidence on the effect of fenofibrate in people with T1D. More studies, with larger sample sizes, and participants with T1D are needed. They should measure outcomes that are important to people with diabetes, e.g. change in vision, reduction in visual acuity of 10 ETDRS letters or more, developing proliferative diabetic retinopathy; and evaluating the requirement of other treatments, e.g. injections of anti-vascular endothelial growth factor therapies, steroids.
Kataoka SY
,Lois N
,Kawano S
,Kataoka Y
,Inoue K
,Watanabe N
... -
《Cochrane Database of Systematic Reviews》
-
Prognostic factors for the development and progression of proliferative diabetic retinopathy in people with diabetic retinopathy.
Diabetic retinopathy (DR) is characterised by neurovascular degeneration as a result of chronic hyperglycaemia. Proliferative diabetic retinopathy (PDR) is the most serious complication of DR and can lead to total (central and peripheral) visual loss. PDR is characterised by the presence of abnormal new blood vessels, so-called "new vessels," at the optic disc (NVD) or elsewhere in the retina (NVE). PDR can progress to high-risk characteristics (HRC) PDR (HRC-PDR), which is defined by the presence of NVD more than one-fourth to one-third disc area in size plus vitreous haemorrhage or pre-retinal haemorrhage, or vitreous haemorrhage or pre-retinal haemorrhage obscuring more than one disc area. In severe cases, fibrovascular membranes grow over the retinal surface and tractional retinal detachment with sight loss can occur, despite treatment. Although most, if not all, individuals with diabetes will develop DR if they live long enough, only some progress to the sight-threatening PDR stage. OBJECTIVES: To determine risk factors for the development of PDR and HRC-PDR in people with diabetes and DR.
We searched the Cochrane Central Register of Controlled Trials (CENTRAL; which contains the Cochrane Eyes and Vision Trials Register; 2022, Issue 5), Ovid MEDLINE, and Ovid Embase. The date of the search was 27 May 2022. Additionally, the search was supplemented by screening reference lists of eligible articles. There were no restrictions to language or year of publication. SELECTION CRITERIA: We included prospective or retrospective cohort studies and case-control longitudinal studies evaluating prognostic factors for the development and progression of PDR, in people who have not had previous treatment for DR. The target population consisted of adults (≥18 years of age) of any gender, sexual orientation, ethnicity, socioeconomic status, and geographical location, with non-proliferative diabetic retinopathy (NPDR) or PDR with less than HRC-PDR, diagnosed as per standard clinical practice. Two review authors independently screened titles and abstracts, and full-text articles, to determine eligibility; discrepancies were resolved through discussion. We considered prognostic factors measured at baseline and any other time points during the study and in any clinical setting. Outcomes were evaluated at three and eight years (± two years) or lifelong. DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data from included studies using a data extraction form that we developed and piloted prior to the data collection stage. We resolved any discrepancies through discussion. We used the Quality in Prognosis Studies (QUIPS) tool to assess risk of bias. We conducted meta-analyses in clinically relevant groups using a random-effects approach. We reported hazard ratios (HR), odds ratios (OR), and risk ratios (RR) separately for each available prognostic factor and outcome, stratified by different time points. Where possible, we meta-analysed adjusted prognostic factors. We evaluated the certainty of the evidence with an adapted version of the GRADE framework. MAIN RESULTS: We screened 6391 records. From these, we identified 59 studies (87 articles) as eligible for inclusion. Thirty-five were prospective cohort studies, 22 were retrospective studies, 18 of which were cohort and six were based on data from electronic registers, and two were retrospective case-control studies. Twenty-three studies evaluated participants with type 1 diabetes (T1D), 19 with type 2 diabetes (T2D), and 17 included mixed populations (T1D and T2D). Studies on T1D included between 39 and 3250 participants at baseline, followed up for one to 45 years. Studies on T2D included between 100 and 71,817 participants at baseline, followed up for one to 20 years. The studies on mixed populations of T1D and T2D ranged from 76 to 32,553 participants at baseline, followed up for four to 25 years. We found evidence indicating that higher glycated haemoglobin (haemoglobin A1c (HbA1c)) levels (adjusted OR ranged from 1.11 (95% confidence interval (CI) 0.93 to 1.32) to 2.10 (95% CI 1.64 to 2.69) and more advanced stages of retinopathy (adjusted OR ranged from 1.38 (95% CI 1.29 to 1.48) to 12.40 (95% CI 5.31 to 28.98) are independent risk factors for the development of PDR in people with T1D and T2D. We rated the evidence for these factors as of moderate certainty because of moderate to high risk of bias in the studies. There was also some evidence suggesting several markers for renal disease (for example, nephropathy (adjusted OR ranged from 1.58 (95% CI not reported) to 2.68 (2.09 to 3.42), and creatinine (adjusted meta-analysis HR 1.61 (95% CI 0.77 to 3.36)), and, in people with T1D, age at diagnosis of diabetes (< 12 years of age) (standardised regression estimate 1.62, 95% CI 1.06 to 2.48), increased triglyceride levels (adjusted RR 1.55, 95% CI 1.06 to 1.95), and larger retinal venular diameters (RR 4.28, 95% CI 1.50 to 12.19) may increase the risk of progression to PDR. The certainty of evidence for these factors, however, was low to very low, due to risk of bias in the included studies, inconsistency (lack of studies preventing the grading of consistency or variable outcomes), and imprecision (wide CIs). There was no substantial and consistent evidence to support duration of diabetes, systolic or diastolic blood pressure, total cholesterol, low- (LDL) and high- (HDL) density lipoproteins, gender, ethnicity, body mass index (BMI), socioeconomic status, or tobacco and alcohol consumption as being associated with incidence of PDR. There was insufficient evidence to evaluate prognostic factors associated with progression of PDR to HRC-PDR. AUTHORS' CONCLUSIONS: Increased HbA1c is likely to be associated with progression to PDR; therefore, maintaining adequate glucose control throughout life, irrespective of stage of DR severity, may help to prevent progression to PDR and risk of its sight-threatening complications. Renal impairment in people with T1D or T2D, as well as younger age at diagnosis of diabetes mellitus (DM), increased triglyceride levels, and increased retinal venular diameters in people with T1D may also be associated with increased risk of progression to PDR. Given that more advanced DR severity is associated with higher risk of progression to PDR, the earlier the disease is identified, and the above systemic risk factors are controlled, the greater the chance of reducing the risk of PDR and saving sight.
Perais J
,Agarwal R
,Evans JR
,Loveman E
,Colquitt JL
,Owens D
,Hogg RE
,Lawrenson JG
,Takwoingi Y
,Lois N
... -
《Cochrane Database of Systematic Reviews》
-
Anti-vascular endothelial growth factor for macular oedema secondary to branch retinal vein occlusion.
Branch retinal vein occlusion (BRVO) is one of the most commonly occurring retinal vascular abnormalities. The most common cause of visual loss in people with BRVO is macular oedema (MO). Grid or focal laser photocoagulation has been shown to reduce the risk of visual loss. Limitations to this treatment exist, however, and newer modalities may have equal or improved efficacy. Antiangiogenic therapy with anti-vascular endothelial growth factor (anti-VEGF) has recently been used successfully to treat MO resulting from a variety of causes.
To investigate the efficacy and gather evidence from randomised controlled trials (RCTs) on the potential harms of anti-vascular endothelial growth factor (VEGF) agents for the treatment of macular oedema (MO) secondary to branch retinal vein occlusion (BRVO).
We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (which contains the Cochrane Eyes and Vision Trials Register) (2019, Issue 6); MEDLINE Ovid; Embase Ovid; the ISRCTN registry; ClinicalTrials.gov; and the WHO ICTRP. The date of the last search was 12 June 2019.
We included randomised controlled trials (RCTs) investigating BRVO. Eligible trials had to have at least six months' follow-up where anti-VEGF treatment was compared with another treatment, no treatment, or placebo. We excluded trials where combination treatments (anti-VEGF plus other treatments) were used; and trials that investigated the dose and duration of treatment without a comparison group (other treatment/no treatment/sham).
Two review authors independently extracted the data using standard methodological procedures expected by Cochrane. The primary outcome was the proportion of participants with an improvement from baseline in best-corrected visual acuity of greater than or equal to 15 letters (3 lines) on the Early Treatment in Diabetic Retinopathy Study (ETDRS) Chart at six months and 12 months of follow-up. The secondary outcomes were the proportion of participants who lost greater than or equal to 15 ETDRS letters (3 lines) and the mean visual acuity (VA) change at six and 12 months, as well as the change in central retinal thickness (CRT) on optical coherence tomography from baseline at six and 12 months. We also collected data on adverse events and quality of life (QoL).
We found eight RCTs of 1631 participants that met the inclusion criteria after independent and duplicate review of the search results. These studies took place in Europe, North America, Eastern Mediterranean region and East Asia. Included participants were adults aged 18 or over with VA of 20/40 or worse. Studies varied by duration of disease but permitted previously treated eyes as long as there was sufficient treatment-free interval. All anti-VEGF agents (bevacizumab, ranibizumab and aflibercept) and steroids (triamcinolone and dexamethasone) were included. Overall, we judged the studies to be at moderate or unclear risk of bias. Four of the eight studies did not mask participants or outcome assessors, or both. One trial compared anti-VEGF to sham. At six months, eyes receiving anti-VEGF were significantly more likely to have a gain of 15 or more ETDRS letters (risk ratio (RR) 1.72, 95% confidence interval (CI) 1.19 to 2.49; 283 participants; moderate-certainty evidence). Mean VA was better in the anti-VEGF group at six months compared with control (mean difference (MD) 7.50 letters, 95% CI 5.29 to 9.71; 282 participants; moderate-certainty evidence). Anti-VEGF also proved more effective at reducing CRT at six months (MD -57.50 microns, 95% CI -108.63 to -6.37; 281 participants; lower CRT is better; moderate-certainty evidence). There was only very low-certainty evidence on adverse effects. There were no reports of endophthalmitis. Mean change in QoL (measured using the National Eye Institute Visual Functioning Questionnaire VFQ-25) was better in people treated with anti-VEGF compared with people treated with sham (MD 7.6 higher score, 95% CI 4.3 to 10.9; 281 participants; moderate-certainty evidence). Three RCTs compared anti-VEGF with macular laser (total participants = 473). The proportion of eyes gaining 15 or more letters was greater in the anti-VEGF group at six months (RR 2.09, 95% CI 1.44 to 3.05; 2 studies, 201 participants; moderate-certainty evidence). Mean VA in the anti-VEGF groups was better than the laser groups at six months (MD 9.63 letters, 95% CI 7.23 to 12.03; 3 studies, 473 participants; moderate-certainty evidence). There was a greater reduction in CRT in the anti-VEGF group compared with the laser group at six months (MD -147.47 microns, 95% CI -200.19 to -94.75; 2 studies, 201 participants; moderate-certainty evidence). There was only very low-certainty evidence on adverse events. There were no reports of endophthalmitis. QoL outcomes were not reported. Four studies compared anti-VEGF with intravitreal steroid (875 participants). The proportion of eyes gaining 15 or more ETDRS letters was greater in the anti-VEGF group at six months (RR 1.67, 95% CI 1.33 to 2.10; 2 studies, 330 participants; high-certainty evidence) and 12 months (RR 1.76, 95% CI 1.36 to 2.28; 1 study, 307 participants; high-certainty evidence). Mean VA was better in the anti-VEGF group at six months (MD 8.22 letters, 95% CI 5.69 to 10.76; 2 studies, 330 participants; high-certainty evidence) and 12 months (MD 9.15 letters, 95% CI 6.32 to 11.97; 2 studies, 343 participants; high-certainty evidence). Mean CRT also showed a greater reduction in the anti-VEGF arm at 12 months compared with intravitreal steroid (MD -26.92 microns, 95% CI -65.88 to 12.04; 2 studies, 343 participants; moderate-certainty evidence). People receiving anti-VEGF showed a greater improvement in QoL at 12 months compared to those receiving steroid (MD 3.10, 95% CI 0.22 to 5.98; 1 study, 307 participants; moderate-certainty evidence). Moderate-certainty evidence suggested increased risk of cataract and raised IOP with steroids. There was only very low-certainty evidence on APTC events. No cases of endophthalmitis were observed.
The available RCT evidence suggests that treatment of MO secondary to BRVO with anti-VEGF improves visual and anatomical outcomes at six and 12 months.
Shalchi Z
,Mahroo O
,Bunce C
,Mitry D
... -
《Cochrane Database of Systematic Reviews》
-
Anti-vascular endothelial growth factor for diabetic macular oedema: a network meta-analysis.
Diabetic macular oedema (DMO) is a common complication of diabetic retinopathy. Antiangiogenic therapy with anti-vascular endothelial growth factor (anti-VEGF) can reduce oedema, improve vision, and prevent further visual loss. These drugs have replaced laser photocoagulation as the standard of care for people with DMO. In the previous update of this review, we found moderate-quality evidence that, at 12 months, aflibercept was slightly more effective than ranibizumab and bevacizumab for improving vision in people with DMO, although the difference may have been clinically insignificant (less than 0.1 logarithm of the minimum angle of resolution (logMAR), or five Early Treatment Diabetic Retinopathy Study (ETDRS) letters, or one ETDRS line).
The objective of this updated review was to compare the effectiveness and safety of the different anti-VEGF drugs in RCTs at longer followup (24 months).
We searched various electronic databases on 8 July 2022.
We included randomised controlled trials (RCTs) that compared any anti-angiogenic drug with an anti-VEGF mechanism of action versus another anti-VEGF drug, another treatment, sham, or no treatment in people with DMO.
We used standard Cochrane methods for pairwise meta-analysis and we augmented this evidence using network meta-analysis (NMA) methods. We used the Stata 'network' meta-analysis package for all analyses. We used the CINeMA (Confidence in Network Meta-Analysis) web application to grade the certainty of the evidence.
We included 23 studies (13 with industry funding) that enrolled 3513 people with DMO (median central retinal thickness (CRT) 460 microns, interquartile range (IQR) 424 to 482) and moderate vision loss (median best-corrected visual acuity (BCVA) 0.48 logMAR, IQR 0.42 to 0.55. One study that investigated ranibizumab versus sham and one study that mainly enrolled people with subclinical DMO and normal BCVA were not suitable for inclusion in the efficacy NMA. Consistent with the previous update of this review, we used ranibizumab as the reference drug for efficacy, and control (including laser, observation, and sham) as the reference for systemic safety. Eight trials provided data on the primary outcome (change in BCVA at 24 months, in logMAR: lower is better). We found no evidence of a difference between the following interventions and ranibizumab alone: aflibercept (mean difference (MD) -0.05 logMAR, 95% confidence interval (CI) -0.12 to 0.02; moderate certainty); bevacizumab (MD -0.01 logMAR, 95% CI -0.13 to 0.10; low certainty), brolucizumab (MD 0.00 logMAR, 95% CI -0.08 to 0.07; low certainty), ranibizumab plus deferred laser (MD 0.00 logMAR, 95% CI -0.11 to 0.10; low certainty), and ranibizumab plus prompt laser (MD 0.03 logMAR, 95% CI -0.04 to 0.09; very low certainty). We also analysed BCVA change at 12 months, finding moderate-certainty evidence of increased efficacy with brolucizumab (MD -0.07 logMAR, 95%CI -0.10 to -0.03 logMAR), faricimab (MD -0.08 logMAR, 95% CI -0.12 to -0.05), and aflibercept (MD -0.07 logMAR, 95 % CI -0.10 to -0.04) compared to ranibizumab alone, but the difference could be clinically insignificant. Compared to ranibizumab alone, NMA of six trials showed no evidence of a difference with aflibercept (moderate certainty), bevacizumab (low certainty), or ranibizumab with prompt (very low certainty) or deferred laser (low certainty) regarding improvement by three or more ETDRS lines at 24 months. There was moderate-certainty evidence of greater CRT reduction at 24 months with brolucizumab (MD -23 microns, 95% CI -65 to -1 9) and aflibercept (MD -26 microns, 95% CI -53 to 0.9) compared to ranibizumab. There was moderate-certainty evidence of lesser CRT reduction with bevacizumab (MD 28 microns, 95% CI 0 to 56), ranibizumab plus deferred laser (MD 63 microns, 95% CI 18 to 109), and ranibizumab plus prompt laser (MD 72 microns, 95% CI 25 to 119) compared with ranibizumab alone. Regarding all-cause mortality at the longest available follow-up (20 trials), we found no evidence of increased risk of death for any drug compared to control, although effects were in the direction of an increase, and clinically relevant increases could not be ruled out. The certainty of this evidence was low for bevacizumab (risk ratio (RR) 2.10, 95% CI 0.75 to 5.88), brolucizumab (RR 2.92, 95% CI 0.68 to 12.58), faricimab (RR 1.91, 95% CI 0.45 to 8.00), ranibizumab (RR 1.26, 95% CI 0.68 to 2.34), and very low for conbercept (RR 0.33, 95% CI 0.01 to 8.81) and aflibercept (RR 1.48, 95% CI 0.79 to 2.77). Estimates for Antiplatelet Trialists Collaboration arterial thromboembolic events at 24 months did not suggest an increase with any drug compared to control, but the NMA was overall incoherent and the evidence was of low or very low certainty. Ocular adverse events were rare and poorly reported and could not be assessed in NMAs.
There is limited evidence of the comparative efficacy and safety of anti-VEGF drugs beyond one year of follow-up. We found no clinically important differences in visual outcomes at 24 months in people with DMO, although there were differences in CRT change. We found no evidence that any drug increases all-cause mortality compared to control, but estimates were very imprecise. Evidence from RCTs may not apply to real-world practice, where people in need of antiangiogenic treatment are often under-treated, and the individuals exposed to these drugs may be less healthy than trial participants.
Virgili G
,Curran K
,Lucenteforte E
,Peto T
,Parravano M
... -
《Cochrane Database of Systematic Reviews》
-
Anti-vascular endothelial growth factor for diabetic macular oedema: a network meta-analysis.
Virgili G
,Parravano M
,Evans JR
,Gordon I
,Lucenteforte E
... -
《Cochrane Database of Systematic Reviews》