-
Combined effects of microplastics and cadmium on the soil-plant system: Phytotoxicity, Cd accumulation and microbial activity.
Microplastics (MPs), an emerging pollutant of concern, widely cooccurred with heavy metals in soil, however, little is known about the combined effects of the interactions of MPs and cadmium (Cd) on the soil-plant system. In this study, the combined effects of several types of MPs and soil Cd contamination on Brassica juncea growth, Cd uptake, and soil microbial carbon metabolism were investigated in a 50-day pot experiment. Aged polyethylene (PE), aged polypropylene (PP), biodegradable polybutylene adipate terephthalate (PBAT) and polylactic acid (PLA) displayed moderate phytotoxicity, with reductions in leaf chlorophyll content and shoot biomass. Compared with the control treatment without MPs or B. juncea, B. juncea growth significantly increased the soil pH by 0.3 pH units, and the growth of B. juncea in the presence of biodegradable PBAT or PLA MPs increased the soil pH by an additional 0.4 or 0.6 pH units, respectively. The presence of PBAT or PLA MPs greatly reduced soil diethylenetriamine pentaacetic acid (DTPA)-extractable Cd concentrations and plant Cd accumulation. The Cd bioconcentration factor was higher in roots than shoots in all treatments except the treatment containing PBAT MPs. The average well color development (AWCD), an indicator of metabolic activity, was highest in the treatment with B. juncea alone and was reduced by both biodegradable and conventional MPs. The microbial utilization efficiency of esters and alcohols was enhanced in the treatment with PBAT MPs, whereas carboxylic acids were preferentially utilized in the treatment with PLA MPs. These findings indicate that co-exposure to MPs and Cd may alter soil microenvironmental characteristics such as soil pH, leading to changes in Cd bioavailability, plant growth and Cd accumulation, and the microbial community's capacity to metabolize carbon. These effects of MPs in soil warrant further exploration.
Wang B
,Wang P
,Zhao S
,Shi H
,Zhu Y
,Teng Y
,Jiang G
,Liu S
... -
《-》
-
Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil.
Microplastics (MPs) as emerging contaminants have attracted attention worldwide, but little is known on their interactions with metallic contaminants in soil-plant systems. Here, we investigated the interactions between MPs, i.e., polyethylene (PE) and polylactic acid (PLA), and cadmium (Cd) on plant performance and arbuscular mycorrhizal fungal community in an agricultural soil. PE showed no noticeable phytotoxicity, while 10% PLA decreased maize biomass and chlorophyll content in leaves. A significant interaction on root biomass occurred between PE and Cd, but not between PLA and Cd. Both PE and PLA caused increase in soil pH and DTPA-extractable Cd concentrations, but no alterations in Cd accumulation in plant tissues. Different numbers of endemic and total OTUs were observed in various treatments. The relative abundance of arbuscular mycorrhizal fungi (AMF) genera highly varied with MPs and Cd. MPs altered AMF community structure and diversity, depending on their type and dose. Coexisting Cd produced slight but significant interactions with MPs on the dominant AMF genera. Overall, plant growth and AMF community varied with MPs type and dose, Cd, and their interactions, and the high dose of PLA produced stronger phytotoxicity. In conclusion, coexisting MPs and Cd can jointly drive shifts in plant performance and root symbiosis, thereby posing additional risks for agroecosystems and soil biodiversity.
Wang F
,Zhang X
,Zhang S
,Zhang S
,Sun Y
... -
《-》
-
Microplastics addition reduced the toxicity and uptake of cadmium to Brassica chinensis L.
The coexistence of microplastics (MPs) and toxic metal contaminants in soils is becoming increasingly common, thereby posing serious threat to soil-plant systems. Cadmium (Cd) is the most common metal contaminant in soil and can easily combine with MPs, thereby altering its bioavailability. However, few studies have focused on the co-pollution of MPs and Cd, particularly the complex phytotoxicity caused by their interaction and the effect of co-exposure on Cd uptake in plants. We conducted pot experiments to compare the effects of exposure to polystyrene (PS) and Cd, as well as the effects of co-exposure (PS + Cd), on the physiological characteristics of Brassica chinensis L. and explored the regulatory factors of MPs on Cd uptake in plant tissues. The results showed that plant biomass, photosynthetic parameters, and chlorophyll content significantly decreased (p < 0.05) with increasing PS doses under treatment with MPs alone. Although the negative effects of PS and Cd co-exposure on plants were higher than those of PS alone, however, the addition of MPs reduced the toxicity effects of Cd on plants and decreased the uptake and accumulation of Cd by plants compared with the Cd treatment alone. Furthermore, plants can resist the increased malondialdehyde content and oxidative stress induced by PS and Cd exposure by increasing the activities of superoxide dismutase and peroxidase. Under the PS + Cd treatment, linear models showed that soil organic carbon and sucrase activity were the key variables affecting Cd uptake by plant shoots and roots, respectively. The results of the partial least squares path modeling further showed that PS indirectly affected Cd uptake by B. chinensis by significantly affecting the physicochemical properties of soil, Cd concentration, and enzyme activity. Our results provide a new perspective and an important reference for further understanding the effects of MPs on the bioavailability and fate of heavy metals.
Zhang Z
,Li Y
,Qiu T
,Duan C
,Chen L
,Zhao S
,Zhang X
,Fang L
... -
《-》
-
Changes in soil properties and microbial activity unveil the distinct impact of polyethylene and biodegradable microplastics on chromium uptake by peanuts.
Microplastics (MPs) are emerging persistent pollutants, and heavy metals are typical environmental pollutants, with their coexistence potentially compounding pollution and ecological risks. However, the interactive impacts and the relevant mechanisms of heavy metal and different types of MPs in plant-soil systems are still unclear. This study investigated the differential impacts of polyethylene MPs (PE MPs) and biodegradable polybutylene adipate MPs (PBAT MPs) on chromium (Cr) uptake in peanuts, focusing on plant performance and rhizosphere soil microenvironment. Compared with nondegradable PE-MPs, biodegradable PBAT MPs produced less significant influences on plant phytotoxicity, soil Cr bioavailability, and soil properties such as pH, CEC, DOC, and MBC, with the exception of MBN in Cr-contaminated soils. Compared to the control, soil pH and cation exchange capacity (CEC) decreased by MPs, while soil-soluble carbon (DOC), microbial biomass carbon, and nitrogen (MBC and MBN) increased by MPs. Compared to the control, soil-bioavailable Cr increased by 11.8-177.8% under PE MPs treatments, while increased by 5.1-156.9% under PBAT MPs treatments. The highest Cr content in shoots and roots was observed at 500.0 mg·kg-1 Cr level, which increased by 53.1% and 79.2% under 5% PE MPs treatments, respectively, as well as increased by 38.3% and 60.4% under 5% PBAT MPs treatments, respectively, compared with the control. The regression path analysis indicated that pH, MBC, MBN, and soil-bioavailable Cr played a vital role in the changes of soil properties and Cr uptake by peanuts induced by MPs. Soil bacterial community analysis revealed that Nocardioides, Proteobacteria, and Sphingomonas were reduced by the inhibition of MPs, which affected Cr uptake by peanuts. These results indicated that the peanut soil microenvironment was affected by PBAT and PE MPs, altering the Cr bioavailability and plant Cr uptake in Cr-contaminated soil.
Jin J
,Wang X
,Sha Y
,Wang F
,Huang X
,Zong H
,Liu J
,Song N
... -
《-》
-
Effects of microplastics on cadmium accumulation by rice and arbuscular mycorrhizal fungal communities in cadmium-contaminated soil.
Both microplastics (MPs) and cadmium (Cd) are common contaminants in soil-rice systems, but their combined effects remain unknown. Thereby, we explored the effects of three MPs, i.e., polyethylene terephthalate (PET), polylactic acid (PLA), and polyester (PES), on Cd accumulation in rice and the community diversity and structure of arbuscular mycorrhizal fungi (AMF) in soil spiked with or without Cd. Results showed that 2% PLA decreased shoot biomass (-28%), but PET had a weaker inhibitive effect. Overall, Cd alone did not significantly change shoot and root biomass and increased root biomass in combination with 0.2% PES. MPs generally increased soil Cd availability but decreased Cd accumulation in rice tissues. Both MPs and Cd improved the bioavailability and uptake of Fe and Mn in rice roots. MPs altered the diversity and community composition of AMF, depending on their type and dose and co-existing Cd. Overall, 2% PLA caused the most distinct changes in soil properties, plant growth and Cd accumulation, and AMF communities, but showed no synergistic interactions with Cd. In conclusion, MPs can mediate rice performance and Cd accumulation via altering soil properties, nutrient uptake, and root mycorrhizal communities, and biodegradable PLA MPs thought environment-friendly can exhibit higher phytotoxicity than conventional MPs.
Liu Y
,Cui W
,Li W
,Xu S
,Sun Y
,Xu G
,Wang F
... -
《-》