-
Drug-drug interaction potentials of tucatinib inhibition of human UDP-glucuronosyltransferases.
Tucatinib is known as a tyrosine kinase inhibitor (TKI), which has been commonly approved for the treatment of adult patients with advanced unresectable or metastatic HER2-positive breast cancer. However, there haven't been systematic study about the inhibition of tucatinib on UDP-Glucuronosyltransferases (UGTs) and the potential risk of drug-drug interactions (DDIs). In present study, we aimed to systematically investigate the inhibition of tucatinib on recombinant human UGTs and pooled human liver microsomes (HLMs), and to quantitatively evaluate its potential risk of DDIs by in vitro-in vivo extrapolation (IVIVE). Our data indicated that tucatinib exhibited extensive inhibition on recombinant UGTs. Tucatinib was a weak inhibitor of UGT1A4, 2B4 and 2B7; tucatinib possessed a strong inhibitory effect on UGT1A1, UGT1A3, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, UGT2B15 and UGT2B17, with IC50 values of 0.53 μM-15.50 μM. Especially, it also potently inhibited estradiol and SN-38 glucuronidation in HLMs with IC50 values of 46.83 μM and 1.33 μM. The quantitative prediction of DDIs risk indicated that the co-administration of tucatinib with drugs mainly metabolized by hepatic or intestinal UGTs (UGT1A1, UGT1A3, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, UGT2B15 and UGT2B17) might result in potential DDIs risk through inhibition of glucuronidation. More attention should be paid to the influence of tucatinib on UGTs in liver and intestine to avoid unnecessary clinical DDIs risk.
Lv X
,Wang Z
,Wang Z
,Yin H
,Xia Y
,Jiang L
,Liu Y
... -
《-》
-
Inhibition of human UDP-glucuronosyltransferase (UGT) enzymes by darolutamide: Prediction of in vivo drug-drug interactions.
Xiao S
,Yin H
,Lv X
,Wang Z
,Jiang L
,Xia Y
,Liu Y
... -
《-》
-
Troglitazone glucuronidation in human liver and intestine microsomes: high catalytic activity of UGT1A8 and UGT1A10.
Troglitazone glucuronidation in human liver and intestine microsomes and recombinant UDP-glucuronosyltransferases (UGTs) were thoroughly characterized. All recombinant UGT isoforms in baculovirus-infected insect cells (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, UGT2B7, and UGT2B15) exhibited troglitazone glucuronosyltransferase activity. Especially UGT1A8 and UGT1A10, which are expressed in extrahepatic tissues such as stomach, intestine, and colon, showed high catalytic activity, followed by UGT1A1 and UGT1A9. The kinetics of the troglitazone glucuronidation in the recombinant UGT1A10 and UGT1A1 exhibited an atypical pattern of substrate inhibition when the substrate concentration was over 200 micro M. With a Michaelis-Menten equation at 6 to 200 micro M troglitazone, the K(m) value was 11.1 +/- 5.8 micro M and the V(max) value was 33.6 +/- 3.7 pmol/min/mg protein in recombinant UGT1A10. In recombinant UGT1A1, the K(m) value was 58.3 +/- 29.2 micro M and the V(max) value was 12.3 +/- 2.5 pmol/min/mg protein. The kinetics of the troglitazone glucuronidation in human liver and jejunum microsomes also exhibited an atypical pattern. The K(m) value was 13.5 +/- 2.0 micro M and the V(max) value was 34.8 +/- 1.2 pmol/min/mg for troglitazone glucuronidation in human liver microsomes, and the K(m) value was 8.1 +/- 0.3 micro M and the V(max) was 700.9 +/- 4.3 pmol/min/mg protein in human jejunum microsomes. When the intrinsic clearance was estimated with the in vitro kinetic parameter, microsomal protein content, and weight of tissue, troglitazone glucuronidation in human intestine was 3-fold higher than that in human livers. Interindividual differences in the troglitazone glucuronosyltransferase activity in liver microsomes from 13 humans were at most 2.2-fold. The troglitazone glucuronosyltransferase activity was significantly (r = 0.579, p < 0.05) correlated with the beta-estradiol 3-glucuronosyltransferase activity, which is mainly catalyzed by UGT1A1. The troglitazone glucuronosyltransferase activity in pooled human liver microsomes was strongly inhibited by bilirubin (IC(50) = 1.9 micro M), a typical substrate of UGT1A1. These results suggested that the troglitazone glucuronidation in human liver would be mainly catalyzed by UGT1A1. Interindividual differences in the troglitazone glucuronosyltransferase activity in S-9 samples from five human intestines was 8.2-fold. The troglitazone glucuronosyltransferase activity in human jejunum microsomes was strongly inhibited by emodin (IC(50) = 15.6 micro M), a typical substrate of UGT1A8 and UGT1A10, rather than by bilirubin (IC(50) = 154.0 micro M). Therefore, it is suggested that the troglitazone glucuronidation in human intestine might be mainly catalyzed by UGT1A8 and UGT1A10.
Watanabe Y
,Nakajima M
,Yokoi T
《DRUG METABOLISM AND DISPOSITION》
-
Inhibitory effects of fifteen phthalate esters in human cDNA-expressed UDP-glucuronosyltransferase supersomes.
Phthalate esters (PAEs) have been extensively used in industry as plasticizers and there remains concerns about their safety. The present study aimed to determine the inhibition of phthalate esters (PAEs) on the activity of the phase II drug-metabolizing enzymes UDP-glucuronosyltransferases (UGTs). In vitro recombinant UGTs-catalyzed glucuronidation of 4-methylumbelliferone was used to investigate the inhibition potentials of PAEs towards various s UGTs. PAEs exhibited no significant inhibition of UGT1A1, UGT1A3, UGT1A8, UGT1A10, UGT2B15, and UGT2B17, and limited inhibition of UGT1A6, UGT1A7 and UGT2B4. However, UGT1A9 was strongly inhibited by PAEs. In silico docking demonstrated a significant contribution of hydrogen bonds and hydrophobic interactions contributing to the inhibition of UGT by PAEs. The Ki values were 15.5, 52.3, 23.6, 12.2, 5.61, 2.79, 1.07, 22.8, 0.84, 73.7, 4.51, 1.74, 0.58, 6.79, 4.93, 6.73, and 7.23 μM for BBOP-UGT1A6, BBZP-UGT1A6, BBOP-UGT1A7, BBZP-UGT1A7, DiPP-UGT1A9, DiBP-UGT1A9, DCHP-UGT1A9, DBP-UGT1A9, BBZP-UGT1A9, BBOP-UGT1A9, DMEP-UGT1A9, DPP-UGT1A9, DHP-UGT1A9, DiBP-UGT2B4, DBP-UGT2B4, DAP-UGT2B4, and BBZP-UGT2B4, respectively. In conclusion, exposure to PAEs might influence the metabolic elimination of endogenous compounds and xenobiotics through inhibiting UGTs.
Cao YF
,Du Z
,Zhu ZT
,Sun HZ
,Fu ZW
,Yang K
,Liu YZ
,Hu CM
,Dong PP
,Gonzalez FJ
,Fang ZZ
... -
《-》
-
Cabozantinib Carries the Risk of Drug-Drug Interactions via Inhibition of UDPglucuronosyltransferase (UGT) 1A9.
Cabozantinib is a multiple receptor tyrosine kinases inhibitor (TKI) approved to treat progressive, metastatic medullary thyroid cancer, advanced renal cell carcinoma, and hepatocellular carcinoma. Drugdrug interactions (DDIs) for cabozantinib have been identified involving the role of cytochromes P450. Although the previous study reported that cabozantinib showed a slight inhibition of UDP-glucuronosyltransferase (UGT) 1A1 at the highest concentration tested, there are no reports on the potential for UGTs-mediated-DDIs. Hence, the current study aims to address this knowledge gap.
This study aimed to investigate the inhibitory effect of cabozantinib on human UGTs and to quantitatively evaluate the DDI potential via UGT inhibition.
The inhibitory effects of cabozantinib on UGTs were determined by measuring the formation rates for 4- methylumbelliferone (4-MU) glucuronide and trifluoperazine N-glucuronide using recombinant human UGT isoforms in the absence or presence of cabozantinib. Inhibition kinetic studies were conducted to determine the type of inhibition of cabozantinib on UGTs and the corresponding inhibition constant (Ki) value. In vitro-in vivo extrapolation (IVIVE) was further employed to predict the potential risk of DDI in vivo.
Cabozantinib displayed potent inhibition of UGT1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B7, and 2B15. Cabozantinib exhibited noncompetitive inhibition towards UGT1A1 and 1A3 and inhibition towards UGT1A7 and 1A9. The Ki,u values (mean ± standard deviation) were calculated to be 2.15±0.11 μM, 0.83±0.05 μM, 0.75±0.04 μM and 0.18 ± 0.10 μM for UGT1A1, 1A3, 1A7 and 1A9, respectively. Co-administration of cabozantinib at the clinically approved dose of 60 mg/day or 140 mg/day may result in approximately a 26% to 60% increase in the systemic exposure of drugs predominantly cleared by UGT1A9, implying a high risk of DDIs.
Cabozantinib has the potential to cause DDIs via the inhibition of UGT1A9; therefore, additional attention should be paid to the safety of the combined use of cabozantinib and drugs metabolized by UGT1A9.
Wang Z
,Jiang L
,Wang X
,Yin H
,Wang Z
,Lv X
,Liu Y
... -
《-》