Fufang Shenhua tablet inhibits renal fibrosis by inhibiting PI3K/AKT.

来自 PUBMED

作者:

Li RShi CWei CWang CDu HLiu RWang XHong QChen X

展开

摘要:

Fufang Shenhua tablet (SHT), a traditional Chinese medicine compound, has been utilized in the clinical management of chronic kidney disease (CKD) for a long time. Nevertheless, the fundamental active constituents and potential mechanism of action remain unclear. Thus, the objective of this study was to investigate the renoprotective effect of SHT on residual renal tissue in CKD model rats and to explore its primary efficacious components and their underlying mechanism. After a 12-week period of SHT treatment through gavage in a 5/6 nephrectomized animal model of CKD, we evaluated the body weight, renal function, and renal pathological changes. Furthermore, the expression levels of fibronectin (FN), collagen I (COL-1), α-smooth muscle actin (α-SMA), and vimentin in renal tissues were assessed. In addition, network pharmacology analysis and molecular docking were utilized to predict the primary active components, potential therapeutic targets, and intervention pathways through which SHT could potentially exert its anti-kidney fibrosis effects. Subsequently, these predictions were validated in renal tissues of rats with CKD and in transforming growth factor β1 (TGF-β1)-induced HK-2 cells. SHT significantly improved renal function and reduced renal pathological damage and fibrosis in CKD model rats. Network pharmacological analysis identified 62 active components in SHT, with quercetin ranked first, and 105 protein targets shared by SHT and CKD. Based on the protein‒protein interaction network (PPI) and the SHT-CKD-pathway network, AKT1, MYC, IL2, and VEGFA were identified as key targets. Furthermore, GO and KEGG pathway enrichment analyses indicated that the renoprotective effect of SHT on CKD was closely associated with the PI3K/AKT signaling pathway. Molecular docking results demonstrated that the main active components of SHT had a strong binding affinity to the hub genes. During experimental validation, SHT hindered the activity of the PI3K/AKT signaling pathway in the renal tissue of CKD model rats. Furthermore, activation of the PI3K/AKT signaling pathway was correlated with a modified fibrotic phenotype in rats with 5/6 nephrectomy-induced CKD and TGF-β1-induced HK-2 cells. Conversely, SHT and quercetin curtailed the activation of the PI3K/AKT signaling pathway and inhibited the formation of renal fibrosis, thus indicating that the PI3K/AKT signaling pathway is the basis of the antifibrotic effects of SHT. Ultimately, administration of the PI3K/AKT agonist 740Y-P counteracted the fibrotic phenotype of TGF-β1-induced HK-2 cells induced by SHT. In this investigation, we employed a fusion of systems pharmacology and in vivo and in vitro experiments to elucidate the mechanism of SHT's antifibrotic properties via obstruction of the PI3K/AKT signaling pathway. Additionally, we surmised that AKT may be the principal target of SHT for the management of CKD and that quercetin may be its efficacious component. We have thus identified SHT as a promising drug for the amelioration of renal fibrosis and the progression of CKD.

收起

展开

DOI:

10.1016/j.phymed.2023.154873

被引量:

16

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(470)

参考文献(0)

引证文献(16)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读