Mortality after coronary artery bypass grafting versus percutaneous coronary intervention with stenting for coronary artery disease: a pooled analysis of individual patient data.
Numerous randomised trials have compared coronary artery bypass grafting (CABG) with percutaneous coronary intervention (PCI) for patients with coronary artery disease. However, no studies have been powered to detect a difference in mortality between the revascularisation strategies.
We did a systematic review up to July 19, 2017, to identify randomised clinical trials comparing CABG with PCI using stents. Eligible studies included patients with multivessel or left main coronary artery disease who did not present with acute myocardial infarction, did PCI with stents (bare-metal or drug-eluting), and had more than 1 year of follow-up for all-cause mortality. In a collaborative, pooled analysis of individual patient data from the identified trials, we estimated all-cause mortality up to 5 years using Kaplan-Meier analyses and compared PCI with CABG using a random-effects Cox proportional-hazards model stratified by trial. Consistency of treatment effect was explored in subgroup analyses, with subgroups defined according to baseline clinical and anatomical characteristics.
We included 11 randomised trials involving 11 518 patients selected by heart teams who were assigned to PCI (n=5753) or to CABG (n=5765). 976 patients died over a mean follow-up of 3·8 years (SD 1·4). Mean Synergy between PCI with Taxus and Cardiac Surgery (SYNTAX) score was 26·0 (SD 9·5), with 1798 (22·1%) of 8138 patients having a SYNTAX score of 33 or higher. 5 year all-cause mortality was 11·2% after PCI and 9·2% after CABG (hazard ratio [HR] 1·20, 95% CI 1·06-1·37; p=0·0038). 5 year all-cause mortality was significantly different between the interventions in patients with multivessel disease (11·5% after PCI vs 8·9% after CABG; HR 1·28, 95% CI 1·09-1·49; p=0·0019), including in those with diabetes (15·5% vs 10·0%; 1·48, 1·19-1·84; p=0·0004), but not in those without diabetes (8·7% vs 8·0%; 1·08, 0·86-1·36; p=0·49). SYNTAX score had a significant effect on the difference between the interventions in multivessel disease. 5 year all-cause mortality was similar between the interventions in patients with left main disease (10·7% after PCI vs 10·5% after CABG; 1·07, 0·87-1·33; p=0·52), regardless of diabetes status and SYNTAX score.
CABG had a mortality benefit over PCI in patients with multivessel disease, particularly those with diabetes and higher coronary complexity. No benefit for CABG over PCI was seen in patients with left main disease. Longer follow-up is needed to better define mortality differences between the revascularisation strategies.
None.
Head SJ
,Milojevic M
,Daemen J
,Ahn JM
,Boersma E
,Christiansen EH
,Domanski MJ
,Farkouh ME
,Flather M
,Fuster V
,Hlatky MA
,Holm NR
,Hueb WA
,Kamalesh M
,Kim YH
,Mäkikallio T
,Mohr FW
,Papageorgiou G
,Park SJ
,Rodriguez AE
,Sabik JF 3rd
,Stables RH
,Stone GW
,Serruys PW
,Kappetein AP
... -
《-》
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.
Survival estimation for patients with symptomatic skeletal metastases ideally should be made before a type of local treatment has already been determined. Currently available survival prediction tools, however, were generated using data from patients treated either operatively or with local radiation alone, raising concerns about whether they would generalize well to all patients presenting for assessment. The Skeletal Oncology Research Group machine-learning algorithm (SORG-MLA), trained with institution-based data of surgically treated patients, and the Metastases location, Elderly, Tumor primary, Sex, Sickness/comorbidity, and Site of radiotherapy model (METSSS), trained with registry-based data of patients treated with radiotherapy alone, are two of the most recently developed survival prediction models, but they have not been tested on patients whose local treatment strategy is not yet decided.
(1) Which of these two survival prediction models performed better in a mixed cohort made up both of patients who received local treatment with surgery followed by radiotherapy and who had radiation alone for symptomatic bone metastases? (2) Which model performed better among patients whose local treatment consisted of only palliative radiotherapy? (3) Are laboratory values used by SORG-MLA, which are not included in METSSS, independently associated with survival after controlling for predictions made by METSSS?
Between 2010 and 2018, we provided local treatment for 2113 adult patients with skeletal metastases in the extremities at an urban tertiary referral academic medical center using one of two strategies: (1) surgery followed by postoperative radiotherapy or (2) palliative radiotherapy alone. Every patient's survivorship status was ascertained either by their medical records or the national death registry from the Taiwanese National Health Insurance Administration. After applying a priori designated exclusion criteria, 91% (1920) were analyzed here. Among them, 48% (920) of the patients were female, and the median (IQR) age was 62 years (53 to 70 years). Lung was the most common primary tumor site (41% [782]), and 59% (1128) of patients had other skeletal metastases in addition to the treated lesion(s). In general, the indications for surgery were the presence of a complete pathologic fracture or an impending pathologic fracture, defined as having a Mirels score of ≥ 9, in patients with an American Society of Anesthesiologists (ASA) classification of less than or equal to IV and who were considered fit for surgery. The indications for radiotherapy were relief of pain, local tumor control, prevention of skeletal-related events, and any combination of the above. In all, 84% (1610) of the patients received palliative radiotherapy alone as local treatment for the target lesion(s), and 16% (310) underwent surgery followed by postoperative radiotherapy. Neither METSSS nor SORG-MLA was used at the point of care to aid clinical decision-making during the treatment period. Survival was retrospectively estimated by these two models to test their potential for providing survival probabilities. We first compared SORG to METSSS in the entire population. Then, we repeated the comparison in patients who received local treatment with palliative radiation alone. We assessed model performance by area under the receiver operating characteristic curve (AUROC), calibration analysis, Brier score, and decision curve analysis (DCA). The AUROC measures discrimination, which is the ability to distinguish patients with the event of interest (such as death at a particular time point) from those without. AUROC typically ranges from 0.5 to 1.0, with 0.5 indicating random guessing and 1.0 a perfect prediction, and in general, an AUROC of ≥ 0.7 indicates adequate discrimination for clinical use. Calibration refers to the agreement between the predicted outcomes (in this case, survival probabilities) and the actual outcomes, with a perfect calibration curve having an intercept of 0 and a slope of 1. A positive intercept indicates that the actual survival is generally underestimated by the prediction model, and a negative intercept suggests the opposite (overestimation). When comparing models, an intercept closer to 0 typically indicates better calibration. Calibration can also be summarized as log(O:E), the logarithm scale of the ratio of observed (O) to expected (E) survivors. A log(O:E) > 0 signals an underestimation (the observed survival is greater than the predicted survival); and a log(O:E) < 0 indicates the opposite (the observed survival is lower than the predicted survival). A model with a log(O:E) closer to 0 is generally considered better calibrated. The Brier score is the mean squared difference between the model predictions and the observed outcomes, and it ranges from 0 (best prediction) to 1 (worst prediction). The Brier score captures both discrimination and calibration, and it is considered a measure of overall model performance. In Brier score analysis, the "null model" assigns a predicted probability equal to the prevalence of the outcome and represents a model that adds no new information. A prediction model should achieve a Brier score at least lower than the null-model Brier score to be considered as useful. The DCA was developed as a method to determine whether using a model to inform treatment decisions would do more good than harm. It plots the net benefit of making decisions based on the model's predictions across all possible risk thresholds (or cost-to-benefit ratios) in relation to the two default strategies of treating all or no patients. The care provider can decide on an acceptable risk threshold for the proposed treatment in an individual and assess the corresponding net benefit to determine whether consulting with the model is superior to adopting the default strategies. Finally, we examined whether laboratory data, which were not included in the METSSS model, would have been independently associated with survival after controlling for the METSSS model's predictions by using the multivariable logistic and Cox proportional hazards regression analyses.
Between the two models, only SORG-MLA achieved adequate discrimination (an AUROC of > 0.7) in the entire cohort (of patients treated operatively or with radiation alone) and in the subgroup of patients treated with palliative radiotherapy alone. SORG-MLA outperformed METSSS by a wide margin on discrimination, calibration, and Brier score analyses in not only the entire cohort but also the subgroup of patients whose local treatment consisted of radiotherapy alone. In both the entire cohort and the subgroup, DCA demonstrated that SORG-MLA provided more net benefit compared with the two default strategies (of treating all or no patients) and compared with METSSS when risk thresholds ranged from 0.2 to 0.9 at both 90 days and 1 year, indicating that using SORG-MLA as a decision-making aid was beneficial when a patient's individualized risk threshold for opting for treatment was 0.2 to 0.9. Higher albumin, lower alkaline phosphatase, lower calcium, higher hemoglobin, lower international normalized ratio, higher lymphocytes, lower neutrophils, lower neutrophil-to-lymphocyte ratio, lower platelet-to-lymphocyte ratio, higher sodium, and lower white blood cells were independently associated with better 1-year and overall survival after adjusting for the predictions made by METSSS.
Based on these discoveries, clinicians might choose to consult SORG-MLA instead of METSSS for survival estimation in patients with long-bone metastases presenting for evaluation of local treatment. Basing a treatment decision on the predictions of SORG-MLA could be beneficial when a patient's individualized risk threshold for opting to undergo a particular treatment strategy ranged from 0.2 to 0.9. Future studies might investigate relevant laboratory items when constructing or refining a survival estimation model because these data demonstrated prognostic value independent of the predictions of the METSSS model, and future studies might also seek to keep these models up to date using data from diverse, contemporary patients undergoing both modern operative and nonoperative treatments.
Level III, diagnostic study.
Lee CC
,Chen CW
,Yen HK
,Lin YP
,Lai CY
,Wang JL
,Groot OQ
,Janssen SJ
,Schwab JH
,Hsu FM
,Lin WH
... -
《-》
Impact of Chronic Kidney Disease on Outcomes of Myocardial Revascularization in Patients With Diabetes.
The optimal coronary revascularization strategy in patients with stable ischemic heart disease (SIHD) who have type 2 diabetes (T2DM) and chronic kidney disease (CKD) remains unclear.
This patient-level pooled analysis sought to compare outcomes of 3 large, federally-funded randomized trials in SIHD patients with T2DM and CKD (COURAGE [Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation], BARI 2D [Bypass Angioplasty Revascularization Investigation 2 Diabetes], and FREEDOM [Future Revascularization Evaluation in Patients with Diabetes Mellitus: Optimal Management of Multi-vessel Disease]).
The primary endpoint was the composite of major adverse cardiovascular or cerebrovascular events (MACCE) including all-cause death, myocardial infarction (MI), or stroke adjusted for trial and randomization strategy.
Of the 4,953 patients with available estimated glomerular filtration rate (eGFR) at baseline, 1,058 had CKD (21.4%). CKD patients were more likely to be older, be female, and have a history of heart failure. CKD subjects were more likely to experience a MACCE (adjusted hazard ratio [HR]: 1.48; 95% confidence interval [CI]: 1.28 to 1.71; p = 0.0001) during a median 4.5-year follow-up. Both mild (eGFR 45 to 60 ml/min/1.73 m2) and moderate to severe (eGFR <45 ml/min/1.73 m2) CKD predicted MACCE (adjusted HRs: 1.25 and 2.26, respectively). For patients without CKD, coronary artery bypass graft (CABG) surgery combined with optimal medical therapy (OMT) was associated with lower MACCE rates compared with percutaneous coronary intervention (PCI) + OMT (adjusted HR: 0.69; 95% CI: 0.55 to 0.86; p = 0.001). For the comparison of CABG + OMT versus PCI + OMT in the CKD group, there was only a statistically significant difference in subsequent revascularization rates (HR: 0.25; 95% CI: 0.15 to 0.41; p = 0.0001) but not in MACCE rates.
Among SIHD patients with T2DM and no CKD, CABG + OMT significantly reduced MACCE compared with PCI + OMT. In subjects with CKD, there was a nonsignificant trend toward a better MACCE outcome with CABG and a significant reduction in subsequent revascularization.
Farkouh ME
,Sidhu MS
,Brooks MM
,Vlachos H
,Boden WE
,Frye RL
,Hartigan P
,Siami FS
,Bittner VA
,Chaitman BR
,Mancini GBJ
,Fuster V
... -
《-》