Synergistic activation of persulfate by FeS@SBA-15 for imidacloprid degradation: Efficiencies, activation mechanism and degradation pathways.
摘要:
In this work, FeS supported SBA-15 mesoporous silica catalyst (FeS@SBA-15) was synthesized successfully, characterized and first applied to persulfate (PS) activation for the degradation of imidacloprid in wastewater. The as-prepared 3.5-FeS@SBA-15 presented an impressive imidacloprid removal efficiency of 93.1% and reaction stoichiometric efficiency (RSE) of 1.82% after 5 min, ascribed to the synergetic effects of improved FeS dispersion and abundant surface sites by SBA-15. Electron paramagnetic resonance spectra and quenching experiments proved that both SO4·- and ·OH were produced in FeS@SBA-15/PS system, and SO4·- played a dominant role in the degradation process. The S2- can accelerate the cycling of Fe(III)/Fe(II) during activation and increase the steady-state concentration of Fe(II). More importantly, the constructed heterogeneous system exhibited an efficient and stable catalytic activity over a wide range of pH (3.0-9.0), temperature (283K-313K), inorganic ion (NO3-) and humic acid (1-20 mg/L). Moreover, the density functional theory calculations were conducted to predict the potential reaction sites of imidacloprid. Based on eighteen identified intermediates, four main degradation pathways were proposed: hydroxylation, dechlorination, hydrolysis, and the ring cleavage of the imidazolidine. ECOSAR analysis indicated hydroxylation and dechlorination played a key role in the detoxification of the formed compounds. These findings would provide new insights into the application of FeS@SBA-15 catalyst in wastewater treatment and the removal mechanism of imidacloprid from wastewater.
收起
展开
DOI:
10.1007/s11356-023-27778-5
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(124)
参考文献(0)
引证文献(1)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无