DDX3X Deficiency Attenuates Pyroptosis Induced by Oxygen-glucose Deprivation/Reoxygenation in N2a Cells.
摘要:
NOD like receptor protein 3 (NLRP3) inflammasome-mediated pyroptosis is strongly related to cerebral ischemia/reperfusion (I/R) injury. DDX3X, the DEAD-box family's ATPase/RNA helicase, promotes NLRP3 inflammasome activation. However, whether DDX3X deficiency attenuates NLRP3 inflammasome-mediated pyroptosis induced by cerebral I/R injury. This study investigated whether DDX3X deficiency attenuates NLRP3 inflammasomemediated pyroptosis in N2a cells after oxygen-glucose deprivation/ reoxygenation (OGD/R) treatment. In vitro model of cerebral I/R injury, mouse neuro2a (N2a) cells subjected to OGD/R were treated with the knockdown of DDX3X. Cell counting kit-8 (CCK-8) assay and Lactate dehydrogenase (LDH) cytotoxicity assay were conducted to measure cell viability and membrane permeability. Double immunofluorescence was performed to determine the pyroptotic cells. Transmission electron microscopy (TEM) was used to observe morphological changes of pyroptosis. Pyroptosis-associated proteins were analyzed by Western blotting. The OGD/R treatment reduced cell viability, increased pyroptotic cells and released LDH compared to the control group. TEM showed membrane pore formation of pyroptosis. Immunofluorescence showed that GSDMD was translocated from the cytoplasm to the membrane after OGD/R treatment. Western blotting showed that the expression of DDX3X, and pyroptosis-related proteins (NLRP3, cleaved-Caspase1, and GSDMD-N) were increased after OGD/R treatment. Nevertheless, DDX3X knockdown markedly improved cell viability and reduced LDH release, expression of pyroptosis-related proteins, and N2a cells pyroptosis. DDX3X knockdown significantly inhibited membrane pore formation and GSDMD translocation from cytoplasm to membrane. This research demonstrates for the first time that DDX3X knockdown attenuates OGD/R induced NLRP3 inflammasome activation and pyroptosis, which implies that DDX3X may become a potential therapeutic target for cerebral I/R injury.
收起
展开
DOI:
10.2174/1567202620666230522155944
被引量:
年份:
2023


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(158)
参考文献(0)
引证文献(0)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无