Bisphenol A induced hepatic steatosis by disturbing bile acid metabolism and FXR/TGR5 signaling pathways via remodeling the gut microbiota in CD-1 mice.

来自 PUBMED

作者:

Hong TZou JHe YZhang HLiu HMai HYang JCao ZChen XYao JFeng D

展开

摘要:

Dysregulation of gut microbiota-mediated bile acid (BA) metabolism plays an important role in the pathogenesis of hepatic steatosis and nonalcoholic fatty liver disease (NAFLD). Our previous studies found that bisphenol A (BPA) exposure induced hepatic steatosis and gut microbiota dysbiosis. However, whether the gut microbiota-dependent BA metabolism alterations were involved in BPA-induced hepatic steatosis remains unclear. Therefore, we explored the gut microbiota-related metabolic mechanisms of hepatic steatosis induced by BPA. Male CD-1 mice were exposed to low-dose BPA (50 μg/kg/day) for 6 months. Fecal microbiota transplantation (FMT) and broad-spectrum antibiotic cocktail (ABX) treatment were further adopted to test the role of gut microbiota in the adverse effects of BPA. We found that BPA induced hepatic steatosis in mice. Additionally, 16S rRNA gene sequencing showed that BPA reduced the relative abundance of Bacteroides, Parabacteroides and Akkermansia, which are associated with BA metabolism. Metabolomic analyses demonstrated that BPA significantly altered the ratio of conjugated to unconjugated BAs and increased the total level of taurine-α/β-muricholic acid while decreasing the level of chenodeoxycholic acid, thus inhibiting the activation of special receptors, including farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5), in the ileum and liver. The inhibition of FXR reduced short heterodimer partner and subsequently induced cholesterol 7α-hydroxylase and sterol regulatory element-binding protein-1c expression, which is related to hepatic BA synthesis and lipogenesis, eventually leading to liver cholestasis and steatosis. Furthermore, we found that mice that received FMT from BPA-exposed mice developed hepatic steatosis, and the influences of BPA on hepatic steatosis and FXR/TGR5 signaling pathways could be eliminated by ABX treatment, confirming the role of gut microbiota in BPA effects. Collectively, our study illustrates that suppressed microbiota-BA-FXR/TGR signaling pathways may be a potential mechanism for hepatic steatosis induced by BPA, providing a new target for the prevention of BPA-induced NAFLD.

收起

展开

DOI:

10.1016/j.scitotenv.2023.164307

被引量:

2

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(421)

参考文献(0)

引证文献(2)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读