Study on the preoperative value of serum SCC-Ag in predicting the stromal invasion of cervical squamous cell carcinoma.

来自 PUBMED

作者:

Qin L

展开

摘要:

To investigate the preoperative value of serum SCC-Ag in predicting the stromal invasion of cervical squamous cell carcinoma. This study retrospectively analyzed 78 patients with early cervical squamous cell carcinoma who underwent surgery as initial treatment at the Senior Department of Obstetrics and Gynecology, the Seventh Medical Center of PLA General Hospital from January 2018 to September 2022 was implemented. The clinicopathological characteristics were statistically compared. The ROC curve was drawn to determine the optimal critical level of  preoperative serum SCC-Ag value for predicting cervical stromal invasion. The depth of myometrial invasion was not related to the age of diagnosis and HPV infection (p > 0.05), while it was related to tumor size, staging, tissue differentiation, LVSI, lymph node metastasis (LNM) and preoperative serum SCC-Ag value (p < 0.05).The area under the curve (AUC) of serum SCC-Ag value was 0.894 (p = 0.000, 95% CI 0.824-0.964), and preoperative serum SCC-Ag value 1.65 ng/ml was the best cutoff for predicting cervical stromal invasion in cervical squamous cell carcinoma. The sensitivity and specificity of diagnosis were 92.3% and 78.8%, respectively. If the preoperative serum SCC-Ag leval more than 1.65 ng/ml in patients with cervical squamous cell carcinoma, the risk of cervical stromal invasion will increase, which can provide a reference for clinical treatment.

收起

展开

DOI:

10.1007/s00432-023-04836-6

被引量:

2

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(20)

引证文献(2)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读