Roxithromycin and rhEGF Co-loaded Reactive Oxygen Species Responsive Nanoparticles for Accelerating Wound Healing.
摘要:
Bacterial infection can delay wound healing and is therefore a major threat to public health. Although various strategies have been developed to treat bacterial infections, antibiotics remain the best option to combat infections. The inclusion of growth factors in the treatment approach can also accelerate wound healing. The co-delivery of antibiotics and growth factors for the combined treatment of wounds needs further investigation. Here we aimed to develop antibiotic and growth factor co-loaded nanoparticles (NPs) to treat Staphylococcus aureus-infected wounds. By using our previously prepared reactive oxygen species-responsive material (Oxi-αCD), roxithromycin (ROX)-loaded NPs (ROX/Oxi-αCD NPs) and recombinant human epidermal growth factor (rhEGF)/ROX co-loaded NPs (rhEGF/ROX/Oxi-αCD NPs) were successfully fabricated. The in vivo efficacy of this prepared nanomedicine was evaluated in mice with S. aureus-infected wounds. ROX/Oxi-αCD NPs and rhEGF/ROX/Oxi-αCD NPs had a spherical structure and their particle sizes were 164 ± 5 nm and 190 ± 8 nm, respectively. The in vitro antibacterial experiments showed that ROX/Oxi-αCD NPs had a lower minimum inhibitory concentration than ROX. The in vivo animal experiments demonstrated that rhEGF/ROX/Oxi-αCD NPs could significantly accelerate the healing of S. aureus-infected wounds as compared to the free ROX drug and ROX/Oxi-αCD NPs (P < 0.05). ROX and rhEGF co-loaded NPs can effectively eliminate bacteria in wounds and accelerate wound healing. Our present work could provide a new strategy to combat bacteria-infected wounds.
收起
展开
DOI:
10.2174/1567201820666230512103750
被引量:
年份:
2024


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(141)
参考文献(0)
引证文献(0)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无