-
Estimation of inbreeding, between-breed genomic relatedness and definition of sub-populations in red-pied cattle breeds.
Currently, enhancing the collaboration between related breeds is of main importance to increase the competitivity and the sustainability of local breeds. One type of collaboration is the development of an across-breed reference population that will allow a better management of local breeds. For this purpose, the genomic relatedness between the local target breed and possible breeds to be included in the reference population should be estimated. In Europe, there are several local red-pied cattle breeds that would benefit from this kind of collaboration. However, how different red-pied cattle breeds from the Benelux are related to each other and can collaborate is still unclear. The objectives of this study were therefore: (1) to estimate the level of inbreeding of the East Belgian Red and White (EBRW), the Red-Pied of the Ösling (RPO) and Dutch red-pied cattle breeds; (2) to determine the genomic relatedness of several red-pied cattle breeds, with a special focus on two endangered breeds: the EBRW and the RPO, and (3) based on the second objective, to detect animals from other breeds that were genomically close enough to be considered as advantageous in the creation of an across-breed reference population of EBRW or RPO. The estimated inbreeding levels based on runs of homozygosity were relatively low for almost all the studied breeds and especially for the EBRW and RPO. This would imply that inbreeding is currently not an issue in these two endangered breeds and that their sustainability is not threatened by their level of inbreeding. The results from the principal component analysis, the phylogenetic tree and the clustering all highlighted that the EBRW and RPO breeds were included in the genomic continuum of the studied red-pied cattle breeds and can be therefore considered as genomically close to Dutch red-pied cattle breeds, highlighting the possibility of a collaboration between these breeds. Especially, EBRW animals were closely related to Deep Red and Improved Red animals while, to a lesser extent, the RPO animals were closely related to the Meuse-Rhine-Yssel breed. Based on these results, we could use distance measures, based either on the principal component analysis or clustering, to detect animals from Dutch breeds that were genomically closest to the EBRW or RPO breeds. This will finally allow the building of an across-breed reference population for EBRW or RPO for further genomic evaluations, considering these genomically closest animals from other breeds.
Wilmot H
,Druet T
,Hulsegge I
,Gengler N
,Calus MPL
... -
《-》
-
Genomic diversity and relationship analyses of endangered German Black Pied cattle (DSN) to 68 other taurine breeds based on whole-genome sequencing.
German Black Pied cattle (Deutsches Schwarzbuntes Niederungsrind, DSN) are an endangered dual-purpose cattle breed originating from the North Sea region. The population comprises about 2,500 cattle and is considered one of the ancestral populations of the modern Holstein breed. The current study aimed at defining the breeds closest related to DSN cattle, characterizing their genomic diversity and inbreeding. In addition, the detection of selection signatures between DSN and Holstein was a goal. Relationship analyses using fixation index (FST), phylogenetic, and admixture analyses were performed between DSN and 68 other breeds from the 1000 Bull Genomes Project. Nucleotide diversity, observed heterozygosity, and expected heterozygosity were calculated as metrics for genomic diversity. Inbreeding was measured as excess of homozygosity (FHom) and genomic inbreeding (FRoH) through runs of homozygosity (RoHs). Region-wide FST and cross-population-extended haplotype homozygosity (XP-EHH) between DSN and Holstein were used to detect selection signatures between the two breeds, and RoH islands were used to detect selection signatures within DSN and Holstein. DSN showed a close genetic relationship with breeds from the Netherlands, Belgium, Northern Germany, and Scandinavia, such as Dutch Friesian Red, Dutch Improved Red, Belgian Red White Campine, Red White Dual Purpose, Modern Angler, Modern Danish Red, and Holstein. The nucleotide diversity in DSN (0.151%) was higher than in Holstein (0.147%) and other breeds, e.g., Norwegian Red (0.149%), Red White Dual Purpose (0.149%), Swedish Red (0.149%), Hereford (0.145%), Angus (0.143%), and Jersey (0.136%). The FHom and FRoH values in DSN were among the lowest. Regions with high FST between DSN and Holstein, significant XP-EHH regions, and RoH islands detected in both breeds harbor candidate genes that were previously reported for milk, meat, fertility, production, and health traits, including one QTL detected in DSN for endoparasite infection resistance. The selection signatures between DSN and Holstein provide evidence of regions responsible for the dual-purpose properties of DSN and the milk type of Holstein. Despite the small population size, DSN has a high level of diversity and low inbreeding. FST supports its relatedness to breeds from the same geographic origin and provides information on potential gene pools that could be used to maintain diversity in DSN.
Neumann GB
,Korkuć P
,Arends D
,Wolf MJ
,May K
,König S
,Brockmann GA
... -
《Frontiers in Genetics》
-
Relatedness between numerically small Dutch Red dairy cattle populations and possibilities for multibreed genomic prediction.
Red dairy breeds are a valuable cultural and historical asset, and often a source of unique genetic diversity. However, they have difficulties competing with other, more productive, dairy breeds. Improving competitiveness of Red dairy breeds, by accelerating their genetic improvement using genomic selection, may be a promising strategy to secure their long-term future. For many Red dairy breeds, establishing a sufficiently large breed-specific reference population for genomic prediction is often not possible, but may be overcome by adding individuals from another breed. Relatedness between breeds strongly decides the benefit of adding another breed to the reference population. To prioritize among available breeds, the effective number of chromosome segments (Me) can be used as an indicator of relatedness between individuals from different breeds. The Me is also an important parameter in determining the accuracy of genomic prediction. The Me can be estimated both within a population and between 2 populations or breeds, as the reciprocal of the variance of genomic relationships. We investigated relatedness between 6 Dutch Red cattle breeds, Groningen White Headed (GWH), Dutch Friesian (DF), Meuse-Rhine-Yssel (MRY), Dutch Belted (DB), Deep Red (DR), and Improved Red (IR), focusing primarily on the Me, to predict which of those breeds may benefit from including reference animals of the other breeds. All of these breeds, except MRY, are under high risk of extinction. Our results indicated high variability of Me, especially between Me ranging from ∼3,500 to ∼17,400, indicating different levels of relatedness between the breeds. Two clusters are especially important, one formed by MRY, DR, and IR, and the other comprising DF and DB. Although relatedness between breeds within each of these 2 clusters is high, across-breed genomic prediction is still limited by the current number of genotyped individuals, which for many breeds is low. However, adding MRY individuals would increase the reference population of DR substantially. We estimated that between 11 and 133 individuals from other breeds are needed to achieve accuracy of genomic prediction equivalent to using one additional individual from the same breed. Given the variation in size of the breeds in this study, the benefit of a multibreed reference population is expected to be lower for larger breeds than for the smaller ones.
Marjanovic J
,Hulsegge B
,Calus MPL
《-》
-
Comparative analysis of inbreeding parameters and runs of homozygosity islands in 2 Italian autochthonous cattle breeds mainly raised in the Parmigiano-Reggiano cheese production region.
Reggiana and Modenese are autochthonous cattle breeds, reared in the North of Italy, that can be mainly distinguished for their standard coat color (Reggiana is red, whereas Modenese is white with some pale gray shades). Almost all milk produced by these breeds is transformed into 2 mono-breed branded Parmigiano-Reggiano cheeses, from which farmers receive the economic incomes needed for the sustainable conservation of these animal genetic resources. After the setting up of their herd books in 1960s, these breeds experienced a strong reduction in the population size that was subsequently reverted starting in the 1990s (Reggiana) or more recently (Modenese) reaching at present a total of about 2,800 and 500 registered cows, respectively. Due to the small population size of these breeds, inbreeding is a very important cause of concern for their conservation programs. Inbreeding is traditionally estimated using pedigree data, which are summarized in an inbreeding coefficient calculated at the individual level (F). However, incompleteness of pedigree information and registration errors can affect the effectiveness of conservation strategies. High-throughput SNP genotyping platforms allow investigation of inbreeding using genome information that can overcome the limits of pedigree data. Several approaches have been proposed to estimate genomic inbreeding, with the use of runs of homozygosity (ROH) considered to be the more appropriate. In this study, several pedigree and genomic inbreeding parameters, calculated using the whole herd book populations or considering genotyping information (GeneSeek GGP Bovine 150K) from 1,684 Reggiana cattle and 323 Modenese cattle, were compared. Average inbreeding values per year were used to calculate effective population size. Reggiana breed had generally lower genomic inbreeding values than Modenese breed. The low correlation between pedigree-based and genomic-based parameters (ranging from 0.187 to 0.195 and 0.319 to 0.323 in the Reggiana and Modenese breeds, respectively) reflected the common problems of local populations in which pedigree records are not complete. The high proportion of short ROH over the total number of ROH indicates no major recent inbreeding events in both breeds. ROH islands spread over the genome of the 2 breeds (15 in Reggiana and 14 in Modenese) identified several signatures of selection. Some of these included genes affecting milk production traits, stature, body conformation traits (with a main ROH island in both breeds on BTA6 containing the ABCG2, NCAPG, and LCORL genes) and coat color (on BTA13 in Modenese containing the ASIP gene). In conclusion, this work provides an extensive comparative analysis of pedigree and genomic inbreeding parameters and relevant genomic information that will be useful in the conservation strategies of these 2 iconic local cattle breeds.
Schiavo G
,Bovo S
,Ribani A
,Moscatelli G
,Bonacini M
,Prandi M
,Mancin E
,Mantovani R
,Dall'Olio S
,Fontanesi L
... -
《-》
-
Changes in genomic inbreeding and diversity over half a century in Swedish Red and Swedish Holstein dairy cattle.
Swedish Red (SR) and Swedish Holstein (SH) are the dominating commercial dairy cattle breeds in Sweden. Both breeds have undergone substantial changes during the last half century due to intensive selection for breeding goal traits, but also resulting from increased international exchange of breeding animals and genetic drift. The aim of this study was to learn more about changes in genomic diversity and inbreeding in these two breeds over time. Therefore, semen samples from old bulls were genotyped using the 150K Genomic Profiler SNP array and combined with 50K SNP array genotype data, obtained for more recent bulls from the Nordic Cattle Genetic Evaluation. Different measures of level of homozygosity, genomic inbreeding, relatedness and changes in allele frequency were estimated for bulls born during different time periods from the 1950s until 2020. In total, more than 33,000 SNPs for 9737 SR and 5041 SH bulls were included in the analysis using PLINK v1.9. The results showed higher average homozygosity for SR than for SH bulls up to around 2000, but the difference was very small after that. The average inbreeding coefficients based on deviation from expected homozygosity as well as on runs of homozygosity decreased until the early 1980s in both breeds, whereafter they started to increase again for SH, but stayed more stable for SR. From the 1990s onwards, SH displayed higher average inbreeding coefficients than SR. In the last studied birth year group (2015-2020), the mean inbreeding coefficient based on runs of homozygosity was 5.9% for SH and 3.7% for SR. A principal component analysis showed a pattern of genetic relationships related to the birth year period of the bulls, illustrating the gradual change of the genetic material within each breed. The change in allele frequency over time was generally larger for SH than for SR. The results show that the inbreeding level was higher half a century ago than at present, and the inbreeding levels were lower than in some other studied populations. Still, the increase seen for inbreeding coefficients and homozygosity, especially in SH during recent years, should be considered in future breeding strategies.
Eriksson S
,Strandberg E
,Johansson AM
《-》