-
Characterization of ovarian tissue oocytes from transgender men reveals poor calcium release and embryo development, which might be overcome by spindle transfer.
Can spindle transfer (ST) overcome inferior embryonic development of in vitro matured ovarian tissue oocytes (OTO-IVM) originating from testosterone-treated transgender men?
ST shows some potential to overcome the embryo developmental arrest observed in OTO-IVM oocytes from transgender men.
OTO-IVM is being applied as a complementary approach to increase the number of oocytes/embryos available for fertility preservation during ovarian tissue cryopreservation in cancer patients. OTO-IVM has also been proposed for transgender men, although the potential of their oocytes remains poorly investigated. Currently, only one study has examined the ability of OTO-IVM oocytes originating from transgender men to support embryo development, and that study has shown that they exhibit poor potential.
Both ovaries from 18 transgender men undergoing oophorectomy were collected for the purposes of this study, from November 2020 to September 2022. The patients did not wish to cryopreserve their tissue for fertility preservation and donated their ovaries for research. All patients were having testosterone treatment at the time of oophorectomy and some of them were also having menses inhibition treatment.
Sibling ovaries were collected in either cold or warm medium, to identify the most optimal collection temperature. Cumulus oocyte complexes (COCs) from each condition were isolated from the ovarian tissue and matured in vitro for 48 h. The quality of OTO-IVM oocytes was assessed by calcium pattern releasing ability, embryo developmental competence following ICSI, and staining for mitochondrial membrane potential. In vitro matured metaphase I (MI) oocytes, germinal vesicle (GV) oocytes, and in vivo matured oocytes with aggregates of smooth endoplasmic reticulum (SERa) were donated from ovarian stimulated women undergoing infertility treatment and these served as Control oocytes for the study groups. ST was applied to overcome poor oocyte quality. Specifically, enucleated mature Control oocytes served as cytoplasmic recipients of the OTO-IVM spindles from the transgender men. Embryos derived from the different groups were scored and analysed by shallow whole genome sequencing for copy number variations (CNVs).
In total, 331 COCs were collected in the cold condition (OTO-Cold) and 282 were collected in the warm condition (OTO-Warm) from transgender men. The maturation rate was close to 54% for OTO-Cold and 57% for OTO-Warm oocytes. Control oocytes showed a calcium releasing ability of 2.30 AU (n = 39), significantly higher than OTO-Cold (1.47 AU, P = 0.046) oocytes (n = 33) and OTO-Warm (1.03 AU, P = 0.036) oocytes (n = 31); both values of calcium release were similar between the two collection temperatures. Mitochondrial membrane potential did not reveal major differences between Control, OTO-Warm, and OTO-Cold oocytes (P = 0.417). Following ICSI, 59/70 (84.2%) of Control oocytes were fertilized, which was significantly higher compared to 19/47 (40.4%) of OTO-Cold (P < 0.01) and 24/48 (50%) of OTO-Warm oocytes (P < 0.01). In total, 15/59 (25.4%) blastocysts were formed on Day 5 in the Control group, significantly higher than 0/19 (0%) from the OTO-Cold (P = 0.014) and 1/24 (4.1%) in OTO-Warm oocytes (P = 0.026). Application of ST rescued the poor embryo development, by increasing the Day 5 blastocyst rate from 0% (0/19) to 20.6% (6/29) (P = 0.034), similar to that in the ICSI-Control group (25.4%, 15/59). A normal genetic profile was observed in 72.7% (8/11) of OTO-Cold, 72.7% (8/11) of OTO-Warm and 64.7% (11/17) of Control Day 3-Day 5 embryos. After ST was applied for OTO-IVM oocytes, 41.1% (7/17) of the embryos displayed normal genetic patterns, compared to 57.1% (4/7) among ST-Control Day 3-Day 5 embryos.
N/A.
Due to the limited access to human oocytes and ovarian tissue, our results should be interpreted with some caution, as only a limited number of human oocytes and embryos could be investigated.
The results of this study, clearly indicate that OTO-IVM oocytes originating from transgender patients are of inferior quality, which questions their use for fertility preservation. The poor quality is likely to be related to cytoplasmic factors, supported by the increased blastocyst numbers following application of ST. Future research on OTO-IVM from transgender men should focus on the cytoplasmic content of oocytes or supplementation of media with factors that promote cytoplasmic maturation. A more detailed study on the effect of the length of testosterone treatment is also currently missing for more concrete guidelines and guidance on the fertility options of transgender men. Furthermore, our study suggests a potentially beneficial role of experimental ST in overcoming poor embryo development related to cytoplasmic quality.
A.C. is a holder of FWO grants (1S80220N and 1S80222N). A.B. is a holder of an FWO grant (1298722N). B.H. and A.V.S. have been awarded with a special BOF (Bijzonder Onderzoeksfonds), GOA (Geconcerteerde onderzoeksacties) and 2018000504 (GOA030-18 BOF) funding. B.H. has additional grants from FWO-Vlaanderen (Flemish Fund for Scientific Research, G051516N and G1507816N) and Ghent University Special Research Fund (Bijzonder Onderzoeksfonds, BOF funding (BOF/STA/202109/005)), and has been receiving unrestricted educational funding from Ferring Pharmaceuticals (Aalst, Belgium). The authors declare that they have no conflict of interest.
N/A.
Christodoulaki A
,He H
,Zhou M
,Cardona Barberán A
,De Roo C
,Chuva De Sousa Lopes SM
,Baetens M
,Menten B
,Van Soom A
,De Sutter P
,Weyers S
,Boel A
,Stoop D
,Heindryckx B
... -
《-》
-
Pronuclear transfer rescues poor embryo development of in vitro-grown secondary mouse follicles.
Is pronuclear transfer (PNT) capable of restoring embryo developmental arrest caused by cytoplasmic inferiority of in vitro-grown (IVG) mouse oocytes?
PNT to in vivo matured cytoplasm significantly improved embryo development of IVG mouse oocytes, leading to living, fertile offspring.
In vitro follicle culture has been considered as a fertility preservation option for cancer patients. Studies describing the culture of human follicles remain scarce, owing to low availability of tissue. Mouse models have extensively been used to study and optimize follicle culture. Although important achievements have been accomplished, including the production of healthy offspring in mice, IVG oocytes are of inferior quality when compared to in vivo-grown oocytes, likely because of cytoplasmic incompetence.
The study was carried out from September 2020 to February 2022. In total, 120 15-day-old B6D2 mice were used to perform secondary follicle culture and assess the quality of IVG oocytes. In vivo-grown control oocytes were obtained from 85 8- to 12-week-old B6D2 mice, following ovarian stimulation. For sperm collection, four B6D2 males between 10 and 14 weeks old were used. For embryo transfer, 14 8- to 12-week-old CD1 females served as surrogate mothers and 10 CD1 vasectomized males 10-24 weeks old were used to generate pseudo-pregnant females. Finally, for mating, four B6D2 female mice aged 8-10 weeks and two B6D2 male mice aged 10 weeks old were used to confirm the fertility of nuclear transfer (NT)-derived pups.
Secondary follicles from 15-day-old B6D2 mice were isolated from the ovaries and cultured for 9 days, before a maturation stimulus was given. Following 16-18 h of maturation, oocytes were collected and evaluated on maturation rate, oocyte diameter, activation rate, spindle morphology, calcium-releasing ability, and mitochondrial membrane potential. For every experiment, in vivo-grown oocytes were used as a control for comparison. When cytoplasmic immaturity and poor embryo development were confirmed in IVG oocytes, PNT was performed. For this, the pronuclei from IVG oocytes, created following parthenogenetic activation and IVF, were transferred to the cytoplasm of fertilized, in vivo-grown oocytes. Genetic analysis and embryo transfer of the generated embryos were implemented to confirm the safety of the technique.
Following 9 days of follicle culture, 703 oocytes were collected, of which 76% showed maturation to the metaphase II stage. Oocyte diameters were significantly lower in IVG oocytes, measuring 67.4 μm versus 73.1 μm in controls (P < 0.001). Spindle morphology did not differ significantly between IVG and control oocytes, but calcium-releasing ability was compromised in the IVG group. An average calcium release of 1.62 arbitrary units was observed in IVG oocytes, significantly lower than 5.74 in control oocytes (P < 0.001). Finally, mitochondrial membrane potential was inferior in IVG compared to the control group, reaching an average value of 0.95 versus 2.27 (P < 0.001). Developmental potential of IVG oocytes was assessed following parthenogenetic activation with strontium chloride (SrCl2). Only 59.4% of IVG oocytes cleaved to two cells and 36.3% reached the blastocyst stage, significantly lower than 89.5% and 88.2% in control oocytes, respectively (P < 0.001 and 0.001). Both PNT and spindle transfer (ST) were explored in pilot experiments with parthenogenetically activated oocytes, as a means to overcome poor embryo development. After the added value of NT was confirmed, we continued with the generation of biparental embryos by PNT. For this purpose, IVG and control oocytes first underwent IVF. Only 15.5% of IVG oocytes were normally fertilized, in contrast to 45.5% in controls (P < 0.001), with resulting failure of blastocyst formation in the IVG group (0 versus 86.2%, P < 0.001). When the pronuclei of IVG zygotes were transferred to the cytoplasm of control zygotes, the blastocyst rate was restored to 86.9%, a similar level as the control. Genetic analysis of PNT embryos revealed a normal chromosomal profile, to a rate of 80%. Finally, the generation of living, fertile offspring from PNT was possible following embryo transfer to surrogate mothers.
N/A.
Genetic profiles of analysed embryos from PNT originate from groups that are too small to draw concrete conclusions, whilst ST, which would be the preferred NT approach, could not be used for the generation of biparental embryos owing to technical limitations. Even though promising, the use of PNT should be considered as experimental. Furthermore, results were acquired in a mouse model, so validation of the technique in human IVG oocytes needs to be performed to evaluate the clinical relevance of the technology. The genetic profiles from IVG oocytes, which would be the ultimate characterization for chromosomal abnormalities, were not analysed owing to limitations in the reliable analysis of single cells.
PNT has the ability to overcome the poor cytoplasmic quality of IVG mouse oocytes. Considering the low maturation efficiency of human IVG oocytes and potential detrimental effects following long-term in vitro culture, NT could be applied to rescue embryo development and could lead to an increased availability of good quality embryos for transfer.
A.C. is a holder of FWO (Fonds voor Wetenschappelijk Onderzoek) grants (1S80220N and 1S80222N). B.H. and A.V.S. have been awarded with a special BOF (Bijzonder Onderzoeksfonds), GOA (Geconcerteerde onderzoeksacties) 2018000504 (GOA030-18 BOF) funding. B.H. has been receiving unrestricted educational funding from Ferring Pharmaceuticals (Aalst, Belgium). The authors declare that they have no conflict of interest.
Christodoulaki A
,He H
,Zhou M
,De Roo C
,Baetens M
,De Pretre T
,Fakhar-I-Adil M
,Menten B
,Van Soom A
,Stoop D
,Boel A
,Heindryckx B
... -
《-》
-
Germline nuclear transfer in mice may rescue poor embryo development associated with advanced maternal age and early embryo arrest.
Can pronuclear transfer (PNT) or maternal spindle transfer (ST) be applied to overcome poor embryo development associated with advanced maternal age or early embryo arrest in a mouse model?
Both PNT and ST may have the potential to restore embryonic developmental potential in a mouse model of reproductive ageing and embryonic developmental arrest.
Germline nuclear transfer (NT) techniques, such as PNT and ST, are currently being applied in humans to prevent the transmission of mitochondrial diseases. Yet, there is also growing interest in the translational use of NT for treating infertility and improving IVF outcomes. Nevertheless, direct scientific evidence to support such applications is currently lacking. Moreover, it remains unclear which infertility indications may benefit from these novel assisted reproductive technologies.
We applied two mouse models to investigate the potential of germline NT for overcoming infertility. Firstly, we used a model of female reproductive ageing (B6D2F1 mice, n = 155), with ages ranging from 6 to 8 weeks (young), 56 (aged) to 70 weeks (very-aged), corresponding to a maternal age of <30, ∼36 and ∼45 years in humans, respectively. Secondly, we used NZB/OlaHsd female mice (7-14 weeks, n = 107), as a model of early embryo arrest. This mouse strain exhibits a high degree of two-cell block. Metaphase II (MII) oocytes and zygotes were retrieved following superovulation.
Ovarian reserve was assessed by histological analysis in the reproductive-aged mice. Mitochondrial membrane potential (△Ψm) was measured by JC-1 staining in MII oocytes, while spindle-chromosomal morphology was examined by confocal microscopy. Reciprocal ST and PNT were performed by transferring the meiotic spindle or pronuclei (PN) from unfertilised or fertilised oocytes (after ICSI) to enucleated oocytes or zygotes between aged or very-aged and young mice. Similarly, NT was also conducted between NZB/OlaHsd (embryo arrest) and B6D2F1 (non-arrest control) mice. Finally, the effect of cytoplasmic transfer (CT) was examined by injecting a small volume (∼5%) of cytoplasm from the oocytes/zygotes of young (B6D2F1) mice to the oocytes/zygotes of aged or very-aged mice or embryo-arrest mice. Overall, embryonic developmental rates of the reconstituted PNT (n = 572), ST (n = 633) and CT (n = 336) embryos were assessed to evaluate the efficiency of these techniques. Finally, chromosomal profiles of individual NT-generated blastocysts were evaluated using next generation sequencing.
Compared to young mice, the ovarian reserve in aged and very-aged mice was severely diminished, reflected by a lower number of ovarian follicles and a reduced number of ovulated oocytes (P < 0.001). Furthermore, we reveal that the average △Ψm in both aged and very-aged mouse oocytes was significantly reduced compared to young mouse oocytes (P < 0.001). In contrast, the average △Ψm in ST-reconstructed oocytes (very-aged spindle and young cytoplast) was improved in comparison to very-aged mouse oocytes (P < 0.001). In addition, MII oocytes from aged and very-aged mice exhibited a higher rate of abnormalities in spindle assembly (P < 0.05), and significantly lower fertilisation (60.7% and 45.3%) and blastocyst formation rates (51.4% and 38.5%) following ICSI compared to young mouse oocytes (89.7% and 87.3%) (P < 0.001). Remarkably, PNT from zygotes obtained from aged or very-aged mice to young counterparts significantly improved blastocyst formation rates (74.6% and 69.2%, respectively) (P < 0.05). Similarly, both fertilisation and blastocyst rates were significantly increased after ST between aged and young mice followed by ICSI (P < 0.05). However, we observed no improvement in embryo development rates when performing ST from very-aged to young mouse oocytes following ICSI (P > 0.05). In the second series of experiments, we primarily confirmed that the majority (61.8%) of in vivo zygotes obtained from NZB/OlaHsd mice displayed two-cell block during in vitro culture, coinciding with a significantly reduced blastocyst formation rate compared to the B6D2F1 mice (13.5% vs. 90.7%; P < 0.001). Notably, following the transfer of PN from the embryo-arrest (NZB/OlaHsd) zygotes to enucleated non-arrest (B6D2F1) counterparts, most reconstructed zygotes developed beyond the two-cell stage, leading to a significantly increased blastocyst formation rate (89.7%) (P < 0.001). Similar findings were obtained after implementing ST between NZB/OlaHsd and B6D2F1 mice, followed by ICSI. Conversely, the use of CT did not improve embryo development in reproductive-age mice nor in the embryo-arrest mouse model (P > 0.05). Surprisingly, chromosomal analysis revealed that euploidy rates in PNT and ST blastocysts generated following the transfer of very-aged PN to young cytoplasts and very-aged spindles to young cytoplasts were comparable to ICSI controls (with young mouse oocytes). A high euploidy rate was also observed in the blastocysts obtained from either PNT or ST between young mice. Conversely, the transfer of young PN and young spindles into very-aged cytoplasts led to a higher rate of chromosomal abnormalities in both PNT and ST blastocysts.
N/A.
The limited number of blastocysts analysed warrants careful interpretation. Furthermore, our observations should be cautiously extrapolated to humans given the inherent differences between mice and women in regards to various biological processes, including centrosome inheritance. The findings suggest that ST or PNT procedures may be able to avoid aneuploidies generated during embryo development, but they are not likely to correct aneuploidies already present in some aged MII oocytes.
To our knowledge, this is the first study to evaluate the potential of PNT and ST in the context of advanced maternal age and embryonic developmental arrest in a mouse model. Our data suggest that PNT, and to a lesser extent ST, may represent a novel reproductive strategy to restore embryo development for these indications.
M.T. is supported by grants from the China Scholarship Council (CSC) (Grant no. 201506160059) and the Special Research Fund from Ghent University (Bijzonder Onderzoeksfonds, BOF) (Grant no. 01SC2916 and no. 01SC9518). This research is also supported by the FWO-Vlaanderen (Flemish fund for scientific research, Grant no. G051017N, G051516N and G1507816N). The authors declare no competing interests.
N/A.
Tang M
,Popovic M
,Stamatiadis P
,Van der Jeught M
,Van Coster R
,Deforce D
,De Sutter P
,Coucke P
,Menten B
,Stoop D
,Boel A
,Heindryckx B
... -
《-》
-
TEAD4 regulates trophectoderm differentiation upstream of CDX2 in a GATA3-independent manner in the human preimplantation embryo.
What is the role of transcriptional-enhanced associate (TEA) domain family member 4 (TEAD4) in trophectoderm (TE) differentiation during human embryo preimplantation development in comparison to mouse?
TEAD4 regulates TE lineage differentiation in the human preimplantation embryo acting upstream of caudal-type homeobox protein 2 (CDX2), but in contrast to the mouse in a GATA-binding protein 3 (GATA3)-independent manner.
Tead4 is one of the earliest transcription factors expressed during mouse embryo preimplantation development and is required for the expression of TE-associated genes. Functional knock-out studies in mouse, inactivating Tead4 by site-specific recombination, have shown that Tead4-targeted embryos have compromised development and expression of the TE-specific Cdx2 and Gata3 is downregulated. Cdx2 and Gata3 act in parallel pathways downstream of Tead4 to induce successful TE differentiation. Downstream loss of Cdx2 expression, compromises TE differentiation and subsequent blastocoel formation and leads to the ectopic expression of inner cell mass (ICM) genes, including POU Class 5 homeobox 1 (Pou5f1) and SRY-box transcription factor (Sox2). Cdx2 is a more potent regulator of TE fate in mouse as loss of Cdx2 expression induces more severe phenotypes compared with loss of Gata3 expression. The role of TEAD4 and its downstream effectors during human preimplantation embryo development has not been investigated yet.
The clustered regularly interspaced short palindromic repeats-clustered regularly interspaced short palindromic repeats (CRISPR)-associated genes (CRISPR-Cas9) system was first introduced in pronuclei (PN)-stage mouse zygotes aiming to identify a guide RNA (gRNA), yielding high editing efficiency and effective disruption of the Tead4 locus. Three guides were tested (gRNA1-3), each time targeting a distinct region of Exon 2 of Tead4. The effects of targeting on developmental capacity were studied in Tead4-targeted embryos (n = 164-summarized data from gRNA1-3) and were compared with two control groups; sham-injected embryos (n = 26) and non-injected media-control embryos (n = 51). The editing efficiency was determined by next-generation sequencing (NGS). In total, n = 55 (summarized data from gRNA1-3) targeted mouse embryos were analysed by NGS. Immunofluorescence analysis to confirm successful targeting by gRNA1 was performed in Tead4-targeted embryos, and non-injected media-control embryos. The downregulation of secondary TE-associated markers Cdx2 and Gata3 was used as an indirect confirmation of successful Tead4-targeting (previously shown to be expressed downstream of Tead4). Additional groups of gRNA1 Tead4-targeted (n = 45) and media control (n = 36) embryos were cultured for an extended period of 8.5 days, to further assess the developmental capacity of the Tead4-targeted group to develop beyond implantation stages. Following the mouse investigation, human metaphase-II (MII) oocytes obtained by IVM were microinjected with gRNA-Cas9 during ICSI (n = 74) to target TEAD4 or used as media-control (n = 33). The editing efficiency was successfully assessed in n = 25 TEAD4-targeted human embryos. Finally, immunofluorescence analysis for TEAD4, CDX2, GATA3 and the ICM marker SOX2 was performed in TEAD4-targeted (n = 10) and non-injected media-control embryos (n = 29).
A ribonucleoprotein complex consisting of a gRNA-Cas9 mixture, designed to target Exon 2 of Tead4/TEAD4, was microinjected in mouse PN stage zygotes or human IVM MII oocytes along with sperm. Generated embryos were cultured in vitro for 4 days in mouse or 6.5 days in human. In mouse, an additional group of Tead4-targeted and media-control embryos was cultured in vitro for an extended period of 8.5 days. Embryonic development and morphology were assessed daily, during culture in vitro of mouse and human embryos and was followed by a detailed scoring at late blastocyst stage. Targeting efficiency following gRNA-Cas9 introduction was assessed via immunostaining and NGS analysis.
NGS analysis of the Tead4-targeted locus revealed very high editing efficiencies for all three guides, with 100% of the mouse embryos (55 out of 55) carrying genetic modifications resulting from CRISPR-Cas9 genome editing. More specifically, 65.22% (15 out 23) of the PN zygotes microinjected with gRNA1-Cas9, which exhibited the highest efficiency, carried exclusively mutated alleles. The developmental capacity of targeted embryos was significantly reduced (data from gRNA1), as 44.17% of the embryos arrested at the morula stage (2.5 days post coitum), coincident with the initiation of TE lineage differentiation, compared with 8.51% in control and 12.50% in sham control groups. High-quality blastocyst formation rates (Grade 3) were 8.97% in the gRNA1-targeted group, compared with 87.23% in the media-control and 87.50% in the sham group. Immunofluorescence analysis in targeted embryos confirmed downregulation of Tead4, Cdx2, and Gata3 expression, which resulted from successful targeting of the Tead4 locus. Tead4-targeted mouse embryos stained positive for the ICM markers Pou5f1 and Sox2, indicating that expression of ICM lineage markers is not affected. Tead4-targeted embryos were able to cavitate and form a blastocoel without being able to hatch. Extended embryo culture following zona pellucida removal, revealed that the targeted embryos can attach and form egg-cylinder-like structures in the absence of trophoblast giant cells. In human embryos, Exon 2 of TEAD4 was successfully targeted by CRISPR-Cas9 (n = 74). In total, 25 embryos from various developmental stages were analysed by NGS and 96.00% (24 out of 25) of the embryos carried genetic modifications because of gRNA-Cas9 editing. In the subgroup of the 24 edited embryos, 17 (70.83%) carried only mutant alleles and 11 out of these 17 (64.70%) carried exclusively frameshift mutations. Six out of 11 embryos reached the blastocyst stage. In contrast to mice, human-targeted embryos formed blastocysts at a rate (25.00%) that did not differ significantly from the control group (23.81%). However, blastocyst morphology and TE quality were significantly compromised following TEAD4-targeting, showing grade C TE scores, with TE containing very few cells. Immunofluorescence analysis of TEAD4-targeted embryos (n = 10) confirmed successful editing by the complete absence of TEAD4 and its downstream TE marker CDX2, but the embryos generated retained expression of GATA3, which is in contrast to what we have observed and has previously been reported in mouse. In this regard, our results indicate that GATA3 acts in parallel with TEAD4/CDX2 towards TE differentiation in human.
N/A.
CRISPR-Cas9 germline genome editing, in some cases, induces mosaic genotypes. These genotypes are a result of inefficient and delayed editing, and complicate the phenotypic analysis and developmental assessment of the injected embryos. We cannot exclude the possibility that the observed differences between mouse and human are the result of variable effects triggered by the culture conditions, which were however similar for both mouse and human embryos in this study. Furthermore, this study utilized human oocytes obtained by IVM, which may not fully recapitulate the developmental behaviour of in vivo matured oocytes.
Elucidation of the evolutionary conservation of molecular mechanisms that regulate the differentiation and formation of the trophoblast lineage can give us fundamental insights into early implantation failure, which accounts for ∼15% of human conceptions.
The research was funded by the FWO-Vlaanderen (Flemish fund for scientific research, Grant no. G051516N), and Hercules funding (FWO.HMZ.2016.00.02.01) and Ghent University (BOF.BAS.2018.0018.01). G.C. is supported by FWO-Vlaanderen (Flemish fund for scientific research, Grant no. 11L8822N). A.B. is supported by FWO-Vlaanderen (Flemish fund for scientific research, Grant no. 1298722 N). We further thank Ferring Pharmaceuticals (Aalst, Belgium) for their unrestricted educational grant. The authors declare no competing interests.
N/A.
Stamatiadis P
,Cosemans G
,Boel A
,Menten B
,De Sutter P
,Stoop D
,Chuva de Sousa Lopes SM
,Lluis F
,Coucke P
,Heindryckx B
... -
《-》
-
Live births following fertility preservation using in-vitro maturation of ovarian tissue oocytes.
Can oocytes extracted from excised ovarian tissue and matured in vitro be a useful adjunct for urgent fertility preservation (FP)?
Ovarian tissue oocyte in-vitro maturation (OTO-IVM) in combination with ovarian tissue cryopreservation (OTC) is a valuable adjunct technique for FP.
Despite the impressive progress in the field, options for FP for cancer patients are still limited and, depending on the technique, clinical outcome data are still scarce.
This was a retrospective cohort study conducted at a university hospital-affiliated fertility clinic between January 2012 and May 2019.
The study included 77 patients who underwent unilateral oophorectomy for OTC. Cumulus-oocyte complexes (COCs) obtained during ovarian tissue processing were matured in vitro for 28-42 h. Oocytes reaching metaphase II stage were vitrified or inseminated for embryo vitrification.
Overall, 1220 COCs were collected. The mean oocyte maturation rate was 39% ± 23% (SD). There were 64 patients who had vitrification of oocytes (6.7 ± 6.3 oocytes per patient). There were 13 patients who had ICSI of mature oocytes after IVM, with 2.0 ± 2.0 embryos vitrified per patient. Twelve patients have returned to the clinic with a desire for pregnancy. For seven of these, OTO-IVM material was thawed. Two patients had OTO-IVM oocytes warmed, with survival rates of 86% and 60%. After ICSI, six oocytes were fertilised in total, generating three good quality embryos for transfer, leading to a healthy live birth for one patient. In five patients, for whom a mean of 2.0 ± 0.8 (SD) embryos had been vitrified, seven embryos were warmed in total: one embryo did not survive the warming process; two tested genetically unsuitable for transfer; and four were transferred in separate cycles to three different patients, resulting in two healthy babies. In this small series, the live birth rate per patient after OTO-IVM, ICSI and embryo transfer was 43%.
The retrospective study design and the limited sample size should be considered when interpreting results.
The results of the study illustrate the added value of OTO-IVM in combination with OTC. We report the first live birth following the use of this appended technique combined with oocyte vitrification.
No external funding was used for this study. M.D.V. reports honoraria for lectures in the last 2 years from MSD and Ferring, outside the submitted work, as well as grant support from MSD. The other authors have nothing to declare.
N/A.
Segers I
,Bardhi E
,Mateizel I
,Van Moer E
,Schots R
,Verheyen G
,Tournaye H
,De Vos M
... -
《-》