ERK-estrogen receptor α signaling plays a role in the process of bone marrow mesenchymal stem cell-derived exosomes protecting against ovariectomy-induced bone loss.

来自 PUBMED

作者:

Qi HShen EShu XLiu DWu C

展开

摘要:

Exosomes derived from bone marrow mesenchymal stem cells (BMSC-Exos) are considered as candidates for osteoporosis (OP) therapy. Estrogen is critical in the maintenance of bone homeostasis. However, the role of estrogen and/or its receptor in BMSC-Exos treatment of OP, as well as its methods of regulation during this process remain unclear. BMSCs were cultured and characterized. Ultracentrifugation was performed to collect BMSC-Exos. Transmission electron microscopy, nanoparticle tracking analysis, and western blotting were used to identify BMSC-Exos. We examined the effects of BMSC-Exos on the proliferation, osteogenic differentiation, mineralization, and cell cycle distribution of MG-63 cells. The protein expression of estrogen receptor α (ERα) and the phosphorylation of ERK were investigated through western blotting. We determined the effects of BMSC-Exos on the prevention of bone loss in female rats. The female Sprague-Dawley rats were divided into three groups: the sham group, ovariectomized (OVX) group, and the OVX + BMSC-Exos group. Bilateral ovariectomy was performed in the OVX and OVX + BMSC-Exos groups, while a similar volume of adipose tissue around the ovary was removed in the sham group. The rats in OVX group and OVX + BMSC-Exos group were given PBS or BMSC-Exos after 2 weeks of surgery. Micro-CT scanning and histological staining were used to evaluate the in vivo effects of BMSC-Exos. BMSC-Exos significantly enhanced the proliferation, alkaline phosphatase activity, and the Alizarin red S staining in MG-63 cells. The results of cell cycle distribution demonstrated that BMSC-Exos increased the proportion of cells in the G2 + S phase and decreased the proportion of cells in the G1 phase. Moreover, PD98059, an inhibitor of ERK, inhibited both the activation of ERK and the expression of ERα, which were promoted by administration of BMSC-Exos. Micro-CT scan showed that in the OVX + BMSC-Exos group, bone mineral density, bone volume/tissue volume fraction, trabecular number were significantly upregulated. Additionally, the microstructure of the trabecular bone was preserved in the OVX + BMSC-Exos group compared to that in the OVX group. BMSC-Exos showed an osteogenic-promoting effect both in vitro and in vivo, in which ERK-ERα signaling might play an important role.

收起

展开

DOI:

10.1186/s13018-023-03660-5

被引量:

3

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(266)

参考文献(48)

引证文献(3)

来源期刊

Journal of Orthopaedic Surgery and Research

影响因子:2.674

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读