The analysis of pesticides and fungicides in the inhibition of human and rat placental 3β-hydroxysteroid dehydrogenase activity: Mode of inhibition and mechanism.
3β-Hydroxysteroid dehydrogenase/steroid Δ5,4-isomerase 1 (3β-HSD1) plays a critical role in the biosynthesis of progesterone from pregnenolone in the human placenta to maintain normal pregnancy. Whether they inhibit placental 3β-HSD1 and mode of inhibition remains unclear. In this study, we screened 21 pesticides and fungicides in five classes to inhibit human 3β-HSD1 and compared them to rat homolog 3β-HSD4. 3β-HSD activity was measured by catalyzing pregnenolone to progesterone in the presence of NAD+. Of the 21 chemicals, azoles (difenoconazole), thiocarbamates (thiram and ferbam) and organochlorine (hexachlorophene) significantly inhibited human 3β-HSD1 with half maximal inhibitory concentration (IC50) values of 2.77, 0.24, 0.68, and 17.96 μM, respectively. We also found that difenoconazole, ferbam and hexachlorophene are mixed/competitive inhibitors of 3β-HSD1 while thiram is a mixed/noncompetitive inhibitor. Docking analysis showed that difenoconazole and hexachlorophene bound steroid-binding site. Difenoconazole and hexachlorophene except thiram and ferbam also significantly inhibited rat 3β-HSD4 activity with IC50 of 1.12 and 2.28 µM, respectively. Thiram and ferbam significantly inhibited human 3β-HSD1 possibly by interfering with cysteine residues, while they had no effects on rat 3β-HSD4. In conclusion, some pesticides potently inhibit placental 3β-HSD, leading to the reduction of progesterone formation.
Zhai Y
,Wang S
,Zhang B
,Tang Y
,Wang H
,Li J
,Hu Z
,Wang Y
,Li H
,Ge RS
... -
《-》
Inhibition of human and rat placental 3β-hydroxysteroid dehydrogenase/Δ(5,4)-isomerase activities by insecticides and fungicides: Mode action by docking analysis.
Many insecticides and fungicides are endocrine-disrupting compounds, which possibly interfere with the placental endocrine system. In the placenta, 3β-hydroxysteroid dehydrogenase/Δ5,4-isomerase type 1 (HSD3B1) is the major steroidogenic enzyme, which makes progesterone from pregnenolone to support the placental stability. In this study, we screened 12 classes of insecticides and fungicides to inhibit placental HSD3B1 activity and compared them to the rat homolog type 4 (HSD3B4) isoform. Human HSD3B1 activity and rat HSD3B4 activity were measured in the presence of 200 nM pregnenolone and 0.2 mM NAD+ and 100 μM of test chemical. Triclosan, triflumizole, dichlone, and oxine at 100 μM significantly inhibited human HSD3B1 activity with the residual activity being less than 50% of the control. Further study showed that the half-maximal inhibitory concentration (IC50) values of triclosan, triflumizole, dichlone, and oxine were 85.53 ± 9.14, 73.75 ± 3.42, 2.54 ± 0.40, and 102.93 ± 6.10 μM, respectively. In the presence of pregnenolone, triclosan, triflumizole, and dichlone were mixed inhibitors of HSD3B1, while oxine was a noncompetitive inhibitor. In the presence of NAD+, triclosan exhibited competitive inhibition while triflumizole possessed uncompetitive inhibition. Docking analysis showed that triclosan bound NAD+-binding site, while triflumizole, dichlone, and oxine mostly bound steroid-binding site. When the effect of these insecticides on rat placental HSD3B4 activity was screened in the presence of 200 nM pregnenolone, atrazine, triclosan, triflumizole, oxine, cyprodinil, and diphenyltin at 100 μM significantly inhibited rat HSD3B4 activity, with IC50 values of triclosan, triflumizole, oxine, and cyprodinil were 82.99 ± 6.48, 35.45 ± 2.73, 105.59 ± 12.04, and 43.37 ± 3.00 μM, respectively. The mode action analysis showed that triflumizole and cyprodinil were almost competitive inhibitors, while triclosan and oxine were almost noncompetitive inhibitors of rat HSD3B4. Docking analysis showed that triclosan and oxine bound cofactor NAD+ binding residues more than steroid-binding residues of rat HSD3B4 while triflumizole and cyprodinil bound most pregnenolone-interactive residues. In conclusion, some insecticides such as triclosan, triflumizole, and oxine can effectively inhibit both human and rat placental HSD3B activity and they have unique mode action due to the structure difference.
Li J
,Tian F
,Tang Y
,Shi L
,Wang S
,Hu Z
,Zhu Y
,Wang Y
,Li H
,Ge RS
,Li X
... -
《-》
Benzophenone-type ultraviolet filters inhibit human and rat placental 3β-hydroxysteroid dehydrogenases: Structure-activity relationship and in silico docking analysis.
Benzophenones (BPs) are a class of chemicals found in various personal care and cosmetic products, such as sunscreens and lotions. Their usage is known to cause reproductive and hormonal health risks, but the exact mechanism of action remains unknown. In this study, we investigated the effects of BPs on human and rat placental 3β-hydroxysteroid dehydrogenases (3β-HSDs), which play a crucial role in the biosynthesis of steroid hormones, particularly progesterone. We tested inhibitory effects of 12 BPs, and performed structure-activity relationship (SAR) and in silico docking analysis. The potency of BPs to inhibit human 3β-HSD1 (h3β-HSD1) is BP-1 (IC50, 8.37 μM)>BP-2 (9.06 μM)>BP-12 (94.24 μM)>BP-7 (1160 μM) >BP-8 (1257 μM) >BP-6 (1410 μM) > other BPs (ineffective at 100 μM). The potency of BPs on rat r3β-HSD4 is BP-1 (IC50, 4.31 μM)>BP-2 (117.3 μM)>BP-6 (669 μM) >BP-3 (820 μM)>other BPs (ineffective at 100 μM). BP-1, BP-2, and BP-12 are mixed h3β-HSD1 inhibitors and BP-1 is a mixed r3β-HSD4 inhibitor. LogP, lowest binding energy, and molecular weight were positively associated with IC50 for h3β-HSD1, while LogS was negatively associated with IC50. The 4-OH substitution in the benzene ring plays a key role in enhancing the effectiveness of inhibiting h3β-HSD1 and r3β-HSD4, possibly through increasing water solubility and decreasing lipophilicity by forming hydrogen bonds. BP-1 and BP-2 inhibited progesterone production in human JAr cells. Docking analysis shows that 2-OH of BP-1 forms hydrogen bonds with catalytic residue Ser125 of h3β-HSD1 and Thr125 of r3β-HSD4. In conclusion, this study demonstrates that BP-1 and BP-2 are moderate inhibitors of h3β-HSD1 and BP-1 is a moderate inhibitor of r3β-HSD4. There is a significant SAR differences for 3β-HSD homologues between BPs and distinct species-dependent inhibition of placental 3β-HSDs.
Lin H
,Wang S
,Tang Y
,Hu Z
,Chen X
,Li H
,Zhu Y
,Wang Y
,Liu Y
,Ge RS
... -
《-》
Human and rat gonadal 3β-hydroxysteroid dehydrogenases are suppressed by dithiocarbamate fungicides via interacting with cysteine residues.
Dithiocarbamates have been widely used in various industrial applications, such as insecticides (ferbam) or drug (disulfiram). This study explored the inhibitory effects of dithiocarbamates on human and rat gonadal 3β-hydroxysteroid dehydrogenases (3β-HSD) and investigated the structure-activity relationship and mechanistic insights. The inhibitory activity of six dithiocarbamates and thiourea on the conversion of pregnenolone to progesterone was evaluated using human KGN cell and rat testicular microsomes, with subsequent progesterone measurement using HPLC-MS/MS. The study found that among the tested compounds disulfiram, ferbam, and thiram exhibited significant inhibitory activity against human 3β-HSD2 and rat 3β-HSD1, with ferbam demonstrating the highest potency. The mode of action for these compounds was characterized, showing mixed inhibition for human 3β-HSD2 and mixed/noncompetitive inhibition for rat 3β-HSD1. Additionally, it was observed that dithiothreitol dose-dependently reversed the inhibitory effects of dithiocarbamates on both human and rat gonadal 3β-HSD enzymes. The study also delved into the penetration of these dithiocarbamates through the human KGN cell membrane and their impact on progesterone production, highlighting their potency in inhibiting human 3β-HSD2. Furthermore, bivariate correlation analysis revealed a positive correlation of LogP (lipophilicity) with IC50 values for both enzymes. Docking analysis indicated that dithiocarbamates bind to NAD+ and steroid-binding sites, with some interactions with cysteine residues. In conclusion, this study provides valuable insights into the structure-activity relationship and mechanistic aspects of dithiocarbamates as inhibitors of human and rat gonadal 3β-HSDs, suggesting that these compounds likely exert their inhibitory effects through binding to cysteine residues.
Zhao X
,Hao T
,Sang J
,Xia M
,Li L
,Ge RS
,Chen C
... -
《-》