A Review of Machine Perfusion Strategies in Liver Transplantation.
The acceptance of liver transplantation as the standard of care for end-stage liver diseases has led to a critical shortage of donor allografts. To expand the donor organ pool, many countries have liberalized the donor criteria including extended criteria donors and donation after circulatory death. These marginal livers are at a higher risk of injury when they are preserved using the standard static cold storage (SCS) preservation techniques. In recent years, research has focused on optimizing organ preservation techniques to protect these marginal livers. Machine perfusion (MP) of the expanded donor liver has witnessed considerable advancements in the last decade. Research has showed MP strategies to confer significant advantages over the SCS techniques, such as longer preservation times, viability assessment and the potential to recondition high risk allografts prior to implantation. In this review article, we address the topic of MP in liver allograft preservation, with emphasis on current trends in clinical application. We discuss the relevant clinical trials related to the techniques of hypothermic MP, normothermic MP, hypothermic oxygenated MP, and controlled oxygenated rewarming. We also discuss the potential applications of ex vivo therapeutics which may be relevant in the future to further optimize the allograft prior to transplantation.
Banker A
,Bhatt N
,Rao PS
,Agrawal P
,Shah M
,Nayak M
,Mohanka R
... -
《-》
Extended hypothermic oxygenated machine perfusion enables ex situ preservation of porcine livers for up to 24 hours.
End-ischemic hypothermic oxygenated machine perfusion (HOPE) of the donor liver for 1-2 h mitigates ischemia-reperfusion injury during subsequent liver transplantation. Extended preservation time may be preferred to facilitate difficult recipient hepatectomy or to optimize logistics. We therefore investigated whether end-ischemic dual HOPE (DHOPE) could extend preservation time for up to 24 h using a porcine liver reperfusion model.
Following 30 min warm ischemia, porcine livers were subjected to 2 h static cold storage (SCS), followed by 2 h, 6 h, or 24 h DHOPE (n = 6 per group). Subsequent normothermic reperfusion was performed for 4 h using autologous blood. Two livers preserved by 24 h SCS served as additional controls. A proof of principle confirmation was carried out in 2 discarded human livers subjected to extended DHOPE. Hepatocellular and cholangiocyte injury and function were assessed. Oxidative stress levels and histology were compared between groups.
Perfusion flows remained stable during DHOPE, regardless of duration. After normothermic reperfusion, livers perfused for 24 h by DHOPE had similar lactate clearance, blood pH, glucose, and alanine aminotransferase levels, and biliary pH, bicarbonate, and LDH levels, as livers perfused for 2 h and 6 h. Levels of malondialdehyde and high-mobility group box 1 in serum and liver parenchyma were similar for all groups. Histological analysis of bile ducts and liver parenchyma revealed no differences between the groups. Extended DHOPE in discarded human livers preserved hepatocellular and cholangiocyte function and histology after reperfusion. In contrast, livers preserved by 24 h SCS were non-functioning.
Extended end-ischemic DHOPE enabled successful preservation of porcine and discarded human donor livers for up to 24 h. Extended DHOPE enables safe extension of preservation time, which may facilitate allocation and transplantation from a logistical perspective, and further expand the donor pool.
It has been suggested that preserving liver grafts with a technique called (dual) hypothermic oxygenated machine perfusion ([D]HOPE) leads to better outcomes after transplantation than if livers are stored on ice, especially if an organ is of lesser quality. In this study, we showed that DHOPE could be used to preserve liver grafts for up to 24 h. This extended procedure could be used globally to facilitate transplantation and expand the donor pool.
Brüggenwirth IMA
,van Leeuwen OB
,de Vries Y
,Bodewes SB
,Adelmeijer J
,Wiersema-Buist J
,Lisman T
,Martins PN
,de Meijer VE
,Porte RJ
... -
《-》
Normothermic and hypothermic machine perfusion preservation versus static cold storage for deceased donor kidney transplantation.
Kidney transplantation is the optimal treatment for kidney failure. Donation, transport and transplant of kidney grafts leads to significant ischaemia reperfusion injury. Static cold storage (SCS), whereby the kidney is stored on ice after removal from the donor until the time of implantation, represents the simplest preservation method. However, technology is now available to perfuse or "pump" the kidney during the transport phase ("continuous") or at the recipient centre ("end-ischaemic"). This can be done at a variety of temperatures and using different perfusates. The effectiveness of these treatments manifests as improved kidney function post-transplant.
To compare machine perfusion (MP) technologies (hypothermic machine perfusion (HMP) and (sub) normothermic machine perfusion (NMP)) with each other and with standard SCS.
We contacted the information specialist and searched the Cochrane Kidney and Transplant Register of Studies until 15 June 2024 using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal, and ClinicalTrials.gov.
All randomised controlled trials (RCTs) and quasi-RCTs comparing machine perfusion techniques with each other or versus SCS for deceased donor kidney transplantation were eligible for inclusion. All donor types were included (donor after circulatory death (DCD) and brainstem death (DBD), standard and extended/expanded criteria donors). Both paired and unpaired studies were eligible for inclusion.
The results of the literature search were screened, and a standard data extraction form was used to collect data. Both of these steps were performed by two independent authors. Dichotomous outcome results were expressed as risk ratios (RR) with 95% confidence intervals (CI). Survival analyses (time-to-event) were performed with the generic inverse variance meta-analysis of hazard ratios (HR). Continuous scales of measurement were expressed as a mean difference (MD). Random effects models were used for data analysis. The primary outcome was the incidence of delayed graft function (DGF). Secondary outcomes included graft survival, incidence of primary non-function (PNF), DGF duration, economic implications, graft function, patient survival and incidence of acute rejection. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach.
Twenty-two studies (4007 participants) were included. The risk of bias was generally low across all studies and bias domains. The majority of the evidence compared non-oxygenated HMP with standard SCS (19 studies). The use of non-oxygenated HMP reduces the rate of DGF compared to SCS (16 studies, 3078 participants: RR 0.78, 95% CI 0.69 to 0.88; P < 0.0001; I2 = 31%; high certainty evidence). Subgroup analysis revealed that continuous (from donor hospital to implanting centre) HMP reduces DGF (high certainty evidence). In contrast, this benefit over SCS was not seen when non-oxygenated HMP was not performed continuously (low certainty evidence). Non-oxygenated HMP reduces DGF in both DCD and DBD settings in studies performed in the 'modern era' and when cold ischaemia times (CIT) were short. The number of perfusions required to prevent one episode of DGF was 7.69 and 12.5 in DCD and DBD grafts, respectively. Continuous non-oxygenated HMP versus SCS also improves one-year graft survival (3 studies, 1056 participants: HR 0.46, 0.29 to 0.75; P = 0.002; I2 = 0%; high certainty evidence). Assessing graft survival at maximal follow-up confirmed a benefit of continuous non-oxygenated HMP over SCS (4 studies, 1124 participants (follow-up 1 to 10 years): HR 0.55, 95% CI 0.40 to 0.77; P = 0.0005; I2 = 0%; high certainty evidence). This effect was not seen in studies where HMP was not continuous. The effect of non-oxygenated HMP on our other outcomes (PNF, incidence of acute rejection, patient survival, hospital stay, long-term graft function, duration of DGF) remains uncertain. Studies performing economic analyses suggest that HMP is either cost-saving (USA and European settings) or cost-effective (Brazil). One study investigated continuous oxygenated HMP versus non-oxygenated HMP (low risk of bias in all domains); the simple addition of oxygen during continuous HMP leads to additional benefits over non-oxygenated HMP in DCD donors (> 50 years), including further improvements in graft survival, improved one-year kidney function, and reduced acute rejection. One large, high-quality study investigated end-ischaemic oxygenated HMP versus SCS and found end-ischaemic oxygenated HMP (median machine perfusion time 4.6 hours) demonstrated no benefit compared to SCS. The impact of longer periods of end-ischaemic HMP is unknown. One study investigated NMP versus SCS (low risk of bias in all domains). One hour of end ischaemic NMP did not improve DGF compared with SCS alone. An indirect comparison revealed that continuous non-oxygenated HMP (the most studied intervention) was associated with improved graft survival compared with end-ischaemic NMP (indirect HR 0.31, 95% CI 0.11 to 0.92; P = 0.03). No studies investigated normothermic regional perfusion (NRP) or included any donors undergoing NRP.
Continuous non-oxygenated HMP is superior to SCS in deceased donor kidney transplantation, reducing DGF, improving graft survival and proving cost-effective. This is true for both DBD and DCD kidneys, both short and long CITs, and remains true in the modern era (studies performed after 2008). In DCD donors (> 50 years), the simple addition of oxygen to continuous HMP further improves graft survival, kidney function and acute rejection rate compared to non-oxygenated HMP. Timing of HMP is important, and benefits have not been demonstrated with short periods (median 4.6 hours) of end-ischaemic HMP. End-ischaemic NMP (one hour) does not confer meaningful benefits over SCS alone and is inferior to continuous HMP in an indirect comparison of graft survival. Further studies assessing NMP for viability assessment and therapeutic delivery are warranted and in progress.
Tingle SJ
,Thompson ER
,Figueiredo RS
,Moir JA
,Goodfellow M
,Talbot D
,Wilson CH
... -
《Cochrane Database of Systematic Reviews》
Transplantation of high-risk donor livers after resuscitation and viability assessment using a combined protocol of oxygenated hypothermic, rewarming and normothermic machine perfusion: study protocol for a prospective, single-arm study (DHOPE-COR-NMP tri
Extended criteria donor (ECD) livers are increasingly accepted for transplantation in an attempt to reduce the gap between the number of patients on the waiting list and the available number of donor livers. ECD livers; however, carry an increased risk of developing primary non-function (PNF), early allograft dysfunction (EAD) or post-transplant cholangiopathy. Ischaemia-reperfusion injury (IRI) plays an important role in the development of these complications. Machine perfusion reduces IRI and allows for reconditioning and subsequent evaluation of liver grafts. Single or dual hypothermic oxygenated machine perfusion (DHOPE) (4°C-12°C) decreases IRI by resuscitation of mitochondria. Controlled oxygenated rewarming (COR) may further reduce IRI by preventing sudden temperature shifts. Subsequent normothermic machine perfusion (NMP) (37°C) allows for ex situ viability assessment to facilitate the selection of ECD livers with a low risk of PNF, EAD or post-transplant cholangiopathy.
This prospective, single-arm study is designed to resuscitate and evaluate initially nationwide declined ECD livers. End-ischaemic DHOPE will be performed for the initial mitochondrial and graft resuscitation, followed by COR of the donor liver to a normothermic temperature. Subsequently, NMP will be continued to assess viability of the liver. Transplantation into eligible recipients will proceed if all predetermined viability criteria are met within the first 150 min of NMP. To facilitate machine perfusion at different temperatures, a perfusion solution containing a haemoglobin-based oxygen carrier will be used. With this protocol, we aim to transplant extra livers. The primary endpoint is graft survival at 3 months after transplantation.
This protocol was approved by the medical ethical committee of Groningen, METc2016.281 in August 2016 and registered in the Dutch Trial registration number TRIAL REGISTRATION NUMBER: NTR5972, NCT02584283.
de Vries Y
,Berendsen TA
,Fujiyoshi M
,van den Berg AP
,Blokzijl H
,de Boer MT
,van der Heide F
,de Kleine RHJ
,van Leeuwen OB
,Matton APM
,Werner MJM
,Lisman T
,de Meijer VE
,Porte R
... -
《BMJ Open》
End-ischemic machine perfusion reduces bile duct injury in donation after circulatory death rat donor livers independent of the machine perfusion temperature.
A short period of oxygenated machine perfusion (MP) after static cold storage (SCS) may reduce biliary injury in donation after cardiac death (DCD) donor livers. However, the ideal perfusion temperature for protection of the bile ducts is unknown. In this study, the optimal perfusion temperature for protection of the bile ducts was assessed. DCD rat livers were preserved by SCS for 6 hours. Thereafter, 1 hour of oxygenated MP was performed using either hypothermic machine perfusion, subnormothermic machine perfusion, or with controlled oxygenated rewarming (COR) conditions. Subsequently, graft and bile duct viability were assessed during 2 hours of normothermic ex situ reperfusion. In the MP study groups, lower levels of transaminases, lactate dehydrogenase (LDH), and thiobarbituric acid reactive substances were measured compared to SCS. In parallel, mitochondrial oxygen consumption and adenosine triphosphate (ATP) production were significantly higher in the MP groups. Biomarkers of biliary function, including bile production, biliary bicarbonate concentration, and pH, were significantly higher in the MP groups, whereas biomarkers of biliary epithelial injury (biliary gamma-glutamyltransferase [GGT] and LDH), were significantly lower in MP preserved livers. Histological analysis revealed less injury of large bile duct epithelium in the MP groups compared to SCS. In conclusion, compared to SCS, end-ischemic oxygenated MP of DCD livers provides better preservation of biliary epithelial function and morphology, independent of the temperature at which MP is performed. End-ischemic oxygenated MP could reduce biliary injury after DCD liver transplantation.
Westerkamp AC
,Mahboub P
,Meyer SL
,Hottenrott M
,Ottens PJ
,Wiersema-Buist J
,Gouw AS
,Lisman T
,Leuvenink HG
,Porte RJ
... -
《-》