-
Excess mortality attributed to heat and cold: a health impact assessment study in 854 cities in Europe.
Heat and cold are established environmental risk factors for human health. However, mapping the related health burden is a difficult task due to the complexity of the associations and the differences in vulnerability and demographic distributions. In this study, we did a comprehensive mortality impact assessment due to heat and cold in European urban areas, considering geographical differences and age-specific risks.
We included urban areas across Europe between Jan 1, 2000, and Dec 12, 2019, using the Urban Audit dataset of Eurostat and adults aged 20 years and older living in these areas. Data were extracted from Eurostat, the Multi-country Multi-city Collaborative Research Network, Moderate Resolution Imaging Spectroradiometer, and Copernicus. We applied a three-stage method to estimate risks of temperature continuously across the age and space dimensions, identifying patterns of vulnerability on the basis of city-specific characteristics and demographic structures. These risks were used to derive minimum mortality temperatures and related percentiles and raw and standardised excess mortality rates for heat and cold aggregated at various geographical levels.
Across the 854 urban areas in Europe, we estimated an annual excess of 203 620 (empirical 95% CI 180 882-224 613) deaths attributed to cold and 20 173 (17 261-22 934) attributed to heat. These corresponded to age-standardised rates of 129 (empirical 95% CI 114-142) and 13 (11-14) deaths per 100 000 person-years. Results differed across Europe and age groups, with the highest effects in eastern European cities for both cold and heat.
Maps of mortality risks and excess deaths indicate geographical differences, such as a north-south gradient and increased vulnerability in eastern Europe, as well as local variations due to urban characteristics. The modelling framework and results are crucial for the design of national and local health and climate policies and for projecting the effects of cold and heat under future climatic and socioeconomic scenarios.
Medical Research Council of UK, the Natural Environment Research Council UK, the EU's Horizon 2020, and the EU's Joint Research Center.
Masselot P
,Mistry M
,Vanoli J
,Schneider R
,Iungman T
,Garcia-Leon D
,Ciscar JC
,Feyen L
,Orru H
,Urban A
,Breitner S
,Huber V
,Schneider A
,Samoli E
,Stafoggia M
,de'Donato F
,Rao S
,Armstrong B
,Nieuwenhuijsen M
,Vicedo-Cabrera AM
,Gasparrini A
,MCC Collaborative Research Network
,EXHAUSTION project
... -
《The Lancet Planetary Health》
-
Temperature-related mortality burden and projected change in 1368 European regions: a modelling study.
Excessively high and low temperatures substantially affect human health. Climate change is expected to exacerbate heat-related morbidity and mortality, presenting unprecedented challenges to public health systems. Since localised assessments of temperature-related mortality risk are essential to formulate effective public health responses and adaptation strategies, we aimed to estimate the current and future temperature-related mortality risk under four climate change scenarios across all European regions.
We modelled current and future mortality due to non-optimal temperatures across 1368 European regions, considering age-specific characteristics and local socioeconomic vulnerabilities. Overseas territories were excluded from the analysis. We applied a three-stage method to estimate temperature-related risk continuously across age and spatial dimensions. Age and city-specific exposure-response functions were obtained for a comprehensive list of 854 European cities from the Urban Audit dataset of Eurostat. Regional aggregates were calculated using an aggregation and extrapolation method that incorporates the risk incidence in neighbouring cities. Mortality was projected for present conditions observed in 1991-2020 and for four different levels of global warming (1·5°C, 2°C, 3°C, and 4°C increase) by regions, and subregions using an ensemble of 11 climate models produced by the Coordinated Regional Climate Downscaling Experiment-CMIP5 over Europe, and population projection data from EUROPOP2019.
Our results highlight regional disparities in temperature-related mortality across Europe. Between 1991 and 2020, the number of cold-related deaths was 2·5 times higher in eastern Europe than western Europe, and heat-related deaths were 6 times higher in southern Europe than in northern Europe. During the same time period, there were a median of 363 809 cold-related deaths (empirical 95% CI 362 493-365 310) and 43 729 heat-related deaths (39 880-45 921), with a cold-to-heat-related death ratio of 8·3:1. Under current climate policies, aligned with 3°C increase in global warming, it is estimated that temperature-related deaths could increase by 54 974 additional deaths (24 112-80 676) by 2100, driven by rising heat-related deaths and an ageing population, resulting in a cold-to-heat-related death ratio of 2·6:1. Climate change is also expected to widen disparities in regional mortality, particularly impacting southern regions of Europe as a result of a marked increase in heat-related deaths.
This study shows that regional disparities in temperature-related mortality risk in Europe are substantial and will continue to increase due to the effects of climate change and an ageing population. The data presented can assist policy makers and health authorities in mitigating increasing health inequalities by prioritising the protection of more susceptible areas and older population groups. We identify the projected areas of heightened risk (southern Europe), where policy intervention aimed at building adaptation and enhancing resilience should be prioritised.
European Commission.
García-León D
,Masselot P
,Mistry MN
,Gasparrini A
,Motta C
,Feyen L
,Ciscar JC
... -
《The Lancet Regional Health》
-
Small-area assessment of temperature-related mortality risks in England and Wales: a case time series analysis.
Epidemiological literature on the health risks associated with non-optimal temperature has mostly reported average estimates across large areas or specific population groups. However, the heterogeneous distribution of drivers of vulnerability can result in local differences in health risks associated with heat and cold. We aimed to analyse the association between ambient air temperature and all-cause mortality across England and Wales and characterise small scale patterns in temperature-related mortality risks and impacts.
We performed a country-wide small-area analysis using data on all-cause mortality and air temperature for 34 753 lower super output areas (LSOAs) within 348 local authority districts (LADs) across England and Wales between Jan 1, 2000, and Dec 31, 2019. We first performed a case time series analysis of LSOA-specific and age-specific mortality series matched with 1 × 1 km gridded temperature data using distributed lag non-linear models, and then a repeated-measure multivariate meta-regression to pool LAD-specific estimates using area-level climatological, socioeconomic, and topographical predictors.
The final analysis included 10 716 879 deaths from all causes. The small-area assessment estimated that each year in England and Wales, there was on average 791 excess deaths (empirical 95% CI 611-957) attributable to heat and 60 573 (55 796-65 145) attributable to cold, corresponding to standardised excess mortality rates of 1·57 deaths (empirical 95% CI 1·21-1·90) per 100 000 person-years for heat and 122·34 deaths (112·90-131·52) per 100 000 person-years for cold. The risks increased with age and were highly heterogeneous geographically, with the minimum mortality temperature ranging from 14·9°C to 22·6°C. Heat-related mortality was higher in urban areas, whereas cold-related mortality showed a more nuanced geographical pattern and increased risk in areas with greater socioeconomic deprivation.
This study provides a comprehensive assessment of excess mortality related to non-optimal outdoor temperature, with several risk indicators reported by age and multiple geographical levels. The analysis provides detailed risk maps that are useful for designing effective public health and climate policies at both local and national levels.
Medical Research Council, Natural Environment Research Council, EU Horizon 2020 Programme, National Institute of Health Research.
Gasparrini A
,Masselot P
,Scortichini M
,Schneider R
,Mistry MN
,Sera F
,Macintyre HL
,Phalkey R
,Vicedo-Cabrera AM
... -
《The Lancet Planetary Health》
-
Estimating the cause-specific relative risks of non-optimal temperature on daily mortality: a two-part modelling approach applied to the Global Burden of Disease Study.
Associations between high and low temperatures and increases in mortality and morbidity have been previously reported, yet no comprehensive assessment of disease burden has been done. Therefore, we aimed to estimate the global and regional burden due to non-optimal temperature exposure.
In part 1 of this study, we linked deaths to daily temperature estimates from the ERA5 reanalysis dataset. We modelled the cause-specific relative risks for 176 individual causes of death along daily temperature and 23 mean temperature zones using a two-dimensional spline within a Bayesian meta-regression framework. We then calculated the cause-specific and total temperature-attributable burden for the countries for which daily mortality data were available. In part 2, we applied cause-specific relative risks from part 1 to all locations globally. We combined exposure-response curves with daily gridded temperature and calculated the cause-specific burden based on the underlying burden of disease from the Global Burden of Diseases, Injuries, and Risk Factors Study, for the years 1990-2019. Uncertainty from all components of the modelling chain, including risks, temperature exposure, and theoretical minimum risk exposure levels, defined as the temperature of minimum mortality across all included causes, was propagated using posterior simulation of 1000 draws.
We included 64·9 million individual International Classification of Diseases-coded deaths from nine different countries, occurring between Jan 1, 1980, and Dec 31, 2016. 17 causes of death met the inclusion criteria. Ischaemic heart disease, stroke, cardiomyopathy and myocarditis, hypertensive heart disease, diabetes, chronic kidney disease, lower respiratory infection, and chronic obstructive pulmonary disease showed J-shaped relationships with daily temperature, whereas the risk of external causes (eg, homicide, suicide, drowning, and related to disasters, mechanical, transport, and other unintentional injuries) increased monotonically with temperature. The theoretical minimum risk exposure levels varied by location and year as a function of the underlying cause of death composition. Estimates for non-optimal temperature ranged from 7·98 deaths (95% uncertainty interval 7·10-8·85) per 100 000 and a population attributable fraction (PAF) of 1·2% (1·1-1·4) in Brazil to 35·1 deaths (29·9-40·3) per 100 000 and a PAF of 4·7% (4·3-5·1) in China. In 2019, the average cold-attributable mortality exceeded heat-attributable mortality in all countries for which data were available. Cold effects were most pronounced in China with PAFs of 4·3% (3·9-4·7) and attributable rates of 32·0 deaths (27·2-36·8) per 100 000 and in New Zealand with 3·4% (2·9-3·9) and 26·4 deaths (22·1-30·2). Heat effects were most pronounced in China with PAFs of 0·4% (0·3-0·6) and attributable rates of 3·25 deaths (2·39-4·24) per 100 000 and in Brazil with 0·4% (0·3-0·5) and 2·71 deaths (2·15-3·37). When applying our framework to all countries globally, we estimated that 1·69 million (1·52-1·83) deaths were attributable to non-optimal temperature globally in 2019. The highest heat-attributable burdens were observed in south and southeast Asia, sub-Saharan Africa, and North Africa and the Middle East, and the highest cold-attributable burdens in eastern and central Europe, and central Asia.
Acute heat and cold exposure can increase or decrease the risk of mortality for a diverse set of causes of death. Although in most regions cold effects dominate, locations with high prevailing temperatures can exhibit substantial heat effects far exceeding cold-attributable burden. Particularly, a high burden of external causes of death contributed to strong heat impacts, but cardiorespiratory diseases and metabolic diseases could also be substantial contributors. Changes in both exposures and the composition of causes of death drove changes in risk over time. Steady increases in exposure to the risk of high temperature are of increasing concern for health.
Bill & Melinda Gates Foundation.
Burkart KG
,Brauer M
,Aravkin AY
,Godwin WW
,Hay SI
,He J
,Iannucci VC
,Larson SL
,Lim SS
,Liu J
,Murray CJL
,Zheng P
,Zhou M
,Stanaway JD
... -
《-》
-
Cooling cities through urban green infrastructure: a health impact assessment of European cities.
High ambient temperatures are associated with many health effects, including premature mortality. The combination of global warming due to climate change and the expansion of the global built environment mean that the intensification of urban heat islands (UHIs) is expected, accompanied by adverse effects on population health. Urban green infrastructure can reduce local temperatures. We aimed to estimate the mortality burden that could be attributed to UHIs and the mortality burden that would be prevented by increasing urban tree coverage in 93 European cities.
We did a quantitative health impact assessment for summer (June 1-Aug 31), 2015, of the effect of UHIs on all-cause mortality for adults aged 20 years or older in 93 European cities. We also estimated the temperature reductions that would result from increasing tree coverage to 30% for each city and estimated the number of deaths that could be potentially prevented as a result. We did all analyses at a high-resolution grid-cell level (250 × 250 m). We propagated uncertainties in input analyses by using Monte Carlo simulations to obtain point estimates and 95% CIs. We also did sensitivity analyses to test the robustness of our estimates.
The population-weighted mean city temperature increase due to UHI effects was 1·5°C (SD 0·5; range 0·5-3·0). Overall, 6700 (95% CI 5254-8162) premature deaths could be attributable to the effects of UHIs (corresponding to around 4·33% [95% CI 3·37-5·28] of all summer deaths). We estimated that increasing tree coverage to 30% would cool cities by a mean of 0·4°C (SD 0·2; range 0·0-1·3). We also estimated that 2644 (95% CI 2444-2824) premature deaths could be prevented by increasing city tree coverage to 30%, corresponding to 1·84% (1·69-1·97) of all summer deaths.
Our results showed the deleterious effects of UHIs on mortality and highlighted the health benefits of increasing tree coverage to cool urban environments, which would also result in more sustainable and climate-resilient cities.
GoGreenRoutes, Spanish Ministry of Science and Innovation, Institute for Global Health, UK Medical Research Council, European Union's Horizon 2020 Project Exhaustion.
Iungman T
,Cirach M
,Marando F
,Pereira Barboza E
,Khomenko S
,Masselot P
,Quijal-Zamorano M
,Mueller N
,Gasparrini A
,Urquiza J
,Heris M
,Thondoo M
,Nieuwenhuijsen M
... -
《-》