Down-regulating insulin-like growth factor-1 receptor reduces amyloid-β deposition in mice cortex induced by chronic sleep restriction.

来自 PUBMED

作者:

Wang MZhao HZhang ZZhao ZWu H

展开

摘要:

Insufficient sleep affects cognitive function, but the underlying mechanism and potential protective ways are yet to be fully understood. This study aimed to explore the influence of chronic sleep restriction (CSR) on the insulin-like growth factor-1 (IGF-1) signaling pathway, and whether down-regulating IGF-1 signaling pathway would modulate amyloid-β (Aβ) peptides metabolism and its cortical deposition after CSR. Methods 8-week IGF-1R+/- mice and wild-type (WT) C57BL/6 (C57) mice were divided into four groups: IGF-1R+/- CSR (MUSR), IGF-1R+/- control (MUCO), C57 CSR (C57SR) and C57 control (C57CO). CSR model was established by application of slowly rotating drum for 2 months. Body weight and Lee's index were measured. The level of IGF-1 in plasma was measured by enzyme linked immunosorbent assay (ELISA). Aβ accumulation was detected by immunofluorescence. The expressions of amyloid precursor protein (APP), β-site amyloid precursor protein-cleaving enzyme-1 (BACE-1) and C99 were detected using western-blot (WB). Results Two-way ANOVA showed genotypic effect was significant on body weight and Lee's index. Neither treatment effect nor interaction reached significant difference on body weight and Lee's index. The level of IGF-1 in plasma was significantly decreased in C57SR compared with C57CO. Besides, compared with C57CO, Aβ was markedly accumulated in frontal cortex, in parallel with increased expressions of BACE-1 and C99, and with no difference of APP in C57SR group. Further, no significant changes of Aβ, BACE-1, C99 and APP were detected in MUSR compared with MUCO. Conclusions This study showed that CSR could induce the decrease of circulating IGF-1 in mice. By using the IGF-1R+/- mice, we found that down-regulating IGF-1R could reduce Aβ deposition in mice frontal cortex after CSR via inhibiting BACE-1 protein expression and activity, which were independent of the changes of body weight and Lee's index. These findings indicate that the blockage of IGF-1 signaling pathway might be a protection mechanism for alleviating the impact of CSR.

收起

展开

DOI:

10.1016/j.neulet.2023.137189

被引量:

2

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(102)

参考文献(0)

引证文献(2)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读