In vitro and in vivo anti-tumor activity of Coenzyme Q(0) against TWIST1-overexpressing HNSCC cells: ROS-mediated inhibition of EMT/metastasis and autophagy/apoptosis induction.
HNSCC (Head and Heck Squamous Cell Carcinoma) is a reasonably prevalent cancer with a high mortality rate. In this study, we tried to examine the anti-metastasis and apoptosis/autophagy actions of Coenzyme Q0 (CoQ0, 2,3-dimethoxy-5-methyl-1,4-benzoquinone), a derivative of Antrodia camphorata in HNCC TWIST1 overexpressing (FaDu-TWIST1) cells as well as in vivo tumor xenograft mice model. Using fluorescence based cellular assays, western blot and nude mice tumor xenografts, we determined that CoQ0 effectively reduced cell viability and displayed rapid morphological changes in FaDu-TWIST1 cells compared to FaDu cells. Non/sub-cytotoxic concentrations of CoQ0 treatment reduces the cell migration by downregulating TWIST1 and upregulating E-cadherin. Apoptosis produced by CoQ0 was mostly related with caspase-3 activation, PARP cleavage, and VDAC-1 expression. The FaDu-TWIST1 cells treated with CoQ0 exhibits autophagy-mediated LC3-II accumulation and acidic vesicular organelles (AVOs) formation. Pre-treatment with 3-MA and CoQ effectively prevented CoQ0-induced cell death and CoQ0-triggered autophagy in FaDu-TWIST cells as a death mechanism. CoQ0 induces ROS production in FaDu-TWIST1 cells and NAC pre-treatment significantly reduces anti-metastasis, apoptosis, and autophagy. Likewise, ROS-mediated AKT inhibition regulates CoQ0-induced apoptosis/autophagy in FaDu-TWIST1 cells. In vivo studies exhibit, CoQ0 effectively delays and reduces the tumor incidence and burden in FaDu-TWIST1-xenografted nude mice. Current findings display, CoQ0 exhibits a novel anti-cancer mechanism hence, it might be appropriate for anticancer therapy, and a new potent drug for HNSCC.
Yang HL
,Chiu LW
,Lin YA
,Pandey S
,Vadivalagan C
,Liao JW
,Gowrisankar YV
,Chen HJ
,Lin HY
,Hseu YC
... -
《-》
Coenzyme Q(0), a novel quinone derivative of Antrodia camphorata, induces ROS-mediated cytotoxic autophagy and apoptosis against human glioblastoma cells in vitro and in vivo.
Coenzyme Q0 (CoQ0, 2,3-dimethoxy-5-methyl-1,4-benzoquinone) derived from Antrodia camphorata exerts anticancer activities against breast, melanoma, and ovarian carcinoma. Glioblastoma multiforme is a common tumor affecting the central nervous system. This study explored anticancer properties of CoQ0 on human glioblastoma both in vitro and in vivo, and explained the molecular mechanism behind it. CoQ0 treatment retarded the growth and suppressed colony formation in glioblastoma (U87MG and GBM8401) cells. CoQ0 induced apoptosis by activation of caspase-3, cleavage of PARP, and dysregulation of Bax and Bcl-2 in both cell lines. Annexin V/PI staining indicated CoQ0 mediated necrosis and apoptosis. Interestingly, AVOs were increased trough induction of autophagy by CoQ0, LC3-II accumulation, and p62/SQSTM1 expression, leading to death mechanism. Z-VAD-FMK has no effect on CoQ0-induced autophagy but autophagy inhibition by 3-methyladenine (3-MA)/chloroquine (CQ) led to CoQ0-induced apoptosis. N-acetylcysteine (NAC) inhibited CoQ0-mediated ROS production and diminished CoQ0-induced apoptotic and autophagic cell death. Further, CoQ0 inhibited PI3K/AKT/mTOR signaling pathways. CoQ0 reduced the tumor burden in U87MG and GBM8401 xenografted athymic nude mice and significantly modulated tumor xenograft by inducing apoptosis and autophagy. CoQ0 generated ROS-mediated apoptotic and autophagic cell death for effective glioblastoma treatment.
Yang HL
,Tsai CH
,Shrestha S
,Lee CC
,Liao JW
,Hseu YC
... -
《-》
In vitro and in vivo anti-tumor activity of Antrodia salmonea against twist-overexpressing HNSCC cells: Induction of ROS-mediated autophagic and apoptotic cell death.
Head and neck squamous cell carcinoma (HNSCC) is a relatively common malignancy, characterized by lethal morbidity. Herein, we attempted to investigate the autophagy/apoptosis activities of the submerged fermented broths of Antrodia salmonea (AS) in HNSCC Twist-overexpressing (OECM-1 and FaDu-Twist) cells. AS (0-150 μg/mL) effectively reduced cell viability, colony formation, and downregulated Twist expression in OECM-1 and FaDu-Twist cells compared to FaDu cells. AS- induced apoptosis was mainly associated with activation of caspase-3, PARP cleavage, increased expression of VDAC-1 and disproportionation of Bax/Bcl-2. Annexin V/PI staining suggested late apoptosis induction by AS treatment. AS exhibits enhanced autophagy process mediated via LC3-I/II accumulation, increased acidic vesicular organelles (AVOs) formation and p62/SQSTM1 expression feeding into the apoptotic program. However, pre-treatment with autophagy blockers 3-MA and CQ significantly diminished AS-induced cell death. Additionally, suppression of AS-induced ROS release by treatment with antioxidant N-acetylcysteine (NAC) resulted in reduction of apoptotic and autophagic cell death. In vivo studies strengthened the above observations and showed that AS effectively reduced the tumor volume and tumor weight in OECM-1-xenografted nude mice. This study discovered that Antrodia salmonea exhibits a novel anti-cancer mechanism which could be harnessed as a new potent drug for HNSCC treatment.
Yang HL
,Lin YA
,Pandey S
,Liao JW
,Way TD
,Yeh YL
,Chen SJ
,Hseu YC
... -
《-》
Coenzyme Q(0) inhibited the NLRP3 inflammasome, metastasis/EMT, and Warburg effect by suppressing hypoxia-induced HIF-1α expression in HNSCC cells.
Coenzyme Q0 (CoQ0), a quinone derivative from Antrodia camphorata, has antitumor capabilities. This study investigated the antitumor effect of noncytotoxic CoQ0, which included NLRP3 inflammasome inhibition, anti-EMT/metastasis, and metabolic reprogramming via HIF-1α inhibition, in HNSCC cells under normoxia and hypoxia. CoQ0 suppressed hypoxia-induced ROS-mediated HIF-1α expression in OECM-1 and SAS cells. Under normoxia and hypoxia, the inflammatory NLRP3, ASC/caspase-1, NFκB, and IL-1β expression was reduced by CoQ0. CoQ0 reduced migration/invasion by enhancing epithelial marker E-cadherin and suppressing mesenchymal markers Twist, N-cadherin, Snail, and MMP-9, and MMP-2 expression. CoQ0 inhibited glucose uptake, lactate accumulation, GLUT1 levels, and HIF-1α-target gene (HK-2, PFK-1, and LDH-A) expressions that are involved in aerobic glycolysis. Notably, CoQ0 reduced ECAR as well as glycolysis, glycolytic capability, and glycolytic reserve and enhanced OCR, basal respiration, ATP generation, maximal respiration, and spare capacity in OECM-1 cells. Metabolomic analysis using LC-ESI-MS showed that CoQ0 treatment decreased the levels of glycolytic intermediates, including lactate, 2/3-phosphoglycerate, fructose 1,6-bisphosphate, and phosphoenolpyruvate, and increased the levels of TCA cycle metabolites, including citrate, isocitrate, and succinate. HIF-1α silencing reversed CoQ0-mediated anti-metastasis (N-Cadherin, Snail, and MMP-9) and metabolic reprogramming (GLUT1, HK-2, and PKM-2) under hypoxia. CoQ0 prevents cancer stem-like characteristics (upregulated CD24 expression and downregulated CD44, ALDH1, and OCT4) under normoxia and/or hypoxia. Further, in IL-6-treated SG cells, CoQ0 attenuated fibrosis by inhibiting TGF-β and Collagen I expression and suppressed EMT by downregulating Slug and upregulating E-cadherin expression. Interesting, CoQ0 inhibited the growth of OECM-1 tumors in xenografted mice. Our results advocate CoQ0 for the therapeutic application against HNSCC.
Yang HL
,Chang CW
,Vadivalagan C
,Pandey S
,Chen SJ
,Lee CC
,Hseu JH
,Hseu YC
... -
《International Journal of Biological Sciences》