-
Tongmai Yangxin pill alleviates myocardial no-reflow by activating GPER to regulate HIF-1α signaling and downstream potassium channels.
Chen T
,Zhang Y
,Chen M
,Yang P
,Wang Y
,Zhang W
,Huang W
,Zhang W
... -
《-》
-
Tongmai Yangxin pill reduces myocardial no-reflow by regulating apoptosis and activating PI3K/Akt/eNOS pathway.
Tongmai Yangxin pill (TMYX) is derived from the Zhigancao decoction recorded in Shang han lun by Zhang Zhongjing during the Han dynasty and was further improved by Professor Ruan Shiyi, a cardiovascular expert at Tianjin University of Traditional Chinese Medicine. TMYX is used for the clinical treatment of chest pain, heartache, and qi-yin-deficiency coronary heart disease and can improve vascular endothelial function in patients with angina pectoris or coronary heart disease by up-regulating nitric oxide activity and then regulating vascular tension. Whether TMYX can further improve myocardial no-reflow by up-regulating NO activity and then dilating blood vessels remains unclear.
This study aimed to reveal whether TMYX can further improve myocardial NR by up-regulating NO activity and then dilating blood vessels. The mechanism underlying PI3K/Akt/eNOS pathway activation and apoptosis regulation is also explored.
The left anterior descending coronary arteries of healthy adult male SD rats were ligated to establish a NR model. The rats were assigned to 14 groups: control, sham, NR, TMYX (4.0 g/kg), sodium nitroprusside (SNP), Tongxinluo capsule (TXL), PI3K blocker (LY), TMYX + LY, SNP + LY, TXL + LY, eNOS blocker (L-NAME), TMYX + L-NAME, SNP + L-NAME, and TXL + L-NAME groups. Cardiac function was measured through echocardiography. Thioflavin S, Evans Blue, and TTC staining were adopted to evaluate NR and ischemic areas. Cell inflammation degree and edema were assessed by hematoxylin-eosin staining. Automated biochemical analyzer and kit were used to detect the activities of myocardial oxidants, including reactive oxygen species, super oxide dismutase, malonaldehyde, and NO. The expression levels of genes and proteins in the PI3K/Akt/eNOS signaling pathway and apoptosis were detected via real-time fluorescence quantitative PCR and Western blot analysis, respectively. A microvascular tension sensor was adopted to detect coronary artery diastolic function in vitro.
TMYX reduced NR and ischemic areas; suppressed LV-mass; enhanced EF, FS, LVOT peak, and LVSV; and improved cardiac structure and function. Moreover, it decreased creatine kinase (CK), CK-MB, and lactic dehydrogenase activities. TMYX increased NO and super oxide dismutase activities; inhibited malonaldehyde activity; reduced muscle fiber swelling and inflammatory cell infiltration; and improved vasodilation in vitro. In the NR myocardium, TMYX stimulated myocardial PI3K activities and PI3K (Tyr458) phosphorylation and enhanced Akt activities and Akt phosphorylation at Tyr315. TMYX increased the activities of eNOS and the phosphorylation of eNOS at Ser1177 in the NR myocardium and attenuated cardiomyocyte apoptosis by increasing the expression of Bcl-2 and decreasing that of caspase-3 and Bax. All these effects of TMYX were abolished by the specific inhibitors of PI3K (LY) and eNOS (L-NAME).
TMYX attenuates myocardial NR after ischemia and reperfusion by activating the PI3K/Akt/eNOS pathway and regulating apoptosis, further up-regulating NO activity and relaxing coronary microvessels.
Chen R
,Chen T
,Wang T
,Dai X
,Meng K
,Zhang S
,Jiang D
,Wang Y
,Zhou K
,Geng T
,Xu J
,Wang Y
... -
《-》
-
Tongmai Yangxin pill reduces myocardial No-reflow via endothelium-dependent NO-cGMP signaling by activation of the cAMP/PKA pathway.
The Tongmai Yangxin pill (TMYX) is derived from the Zhigancao decoction recorded in Shang han lun by Zhang Zhongjing during the Han dynasty. TMYX is used for the clinical treatment of chest pain, heartache, and qi-yin-deficiency coronary heart disease. Previous studies have confirmed that TMYX can improve vascular endothelial function in patients with coronary heart disease by upregulating nitric oxide activity and then regulating vascular tension. Whether TMYX can further improve myocardial NR by upregulating NO activity and then dilating blood vessels remains unclear.
This study aimed to reveal whether TMYX can further improve myocardial NR by upregulating NO activity and then dilating blood vessels. The underlying cAMP/PKA and NO-cGMP signaling pathway-dependent mechanism is also explored.
The left anterior descending coronary arteries of healthy adult male SD rats were ligated to establish the NR model. TMYX (4.0 g/kg) was orally administered throughout the experiment. Cardiac function was measured through echocardiography. Thioflavin S, Evans Blue, and TTC staining were used to evaluate the NR and ischemic areas. Pathological changes in the myocardium were assessed by hematoxylin-eosin staining. An automated biochemical analyzer and kit were used to detect the activities of myocardial enzymes and myocardial oxidants, including CK, CK-MB, LDH, reactive oxygen species, superoxide dismutase, malonaldehyde, and NO. The expression levels of genes and proteins related to the cAMP/PKA and NO/cGMP signaling pathways were detected via real-time fluorescence quantitative PCR and Western blot analysis, respectively. A microvascular tension sensor was used to detect coronary artery diastolic function in vitro.
TMYX elevated the EF, FS, LVOT peak, LVPWd and LVPWs values, decreased the LVIDd, LVIDs, LV-mass, IVSd, and LV Vols values, demonstrating cardio-protective effects, and reduced the NR and ischemic areas. Pathological staining showed that TMYX could significantly reduce inflammatory cell number and interstitial edema. The activities of CK, LDH, and MDA were reduced, NO activity was increased, and oxidative stress was suppressed after treatment with TMYX. TMYX not only enhanced the expression of Gs-α, AC, PKA, and eNOS but also increased the expression of sGC and PKG. Furthermore, TMYX treatment significantly decreased ROCK expression. We further showed that TMYX (25-200 mg/mL) relaxed isolated coronary microvessels.
TMYX attenuates myocardial NR after ischemia and reperfusion by activating the cAMP/PKA and NO/cGMP signaling pathways, further upregulating NO activity and relaxing coronary microvessels.
Chen R
,Chen T
,Wang T
,Dai X
,Zhang S
,Jiang D
,Meng K
,Wang Y
,Geng T
,Xu J
,Zhou K
,Wang Y
... -
《-》
-
Anti-inflammatory activity of the Tongmai Yangxin pill in the treatment of coronary heart disease is associated with estrogen receptor and NF-κB signaling pathway.
The Tongmai Yangxin Pill (TMYX) is a patented traditional Chinese medicine originating from two classic prescriptions, Zhigancao Decoction and Shenmai Yin, which composed of 11 Chinese medicinal herbs: Rehmannia glutinosa (Gaertn.) DC., Spatholobus suberectus Dunn, Ophiopogon japonicus (Thunb.) Ker Gawl., Glycyrrhiza uralensis Fisch., Polygonum multiflorum Thunb., Equus asinus L., Schisandra chinensis (Turcz.) Baill., Codonopsis pilosula (Franch.) Nannf., Chinemys reevesii (Gray), Ziziphus jujuba Mill. and Cinnamomum cassia (L.) J.Presl (Committee of the Pharmacopoeia of PR China, 2015). TMYX has marketed in China for the treatment of chest pain, palpitation, angina, irregular heartbeat and coronary heart disease (CHD) for several decades. Previous studies have confirmed that TMYX can treat CHD by reducing inflammation, but the underlying pharmacological mechanism remains unclear.
This study aimed to declare the underlying pharmacological mechanism of anti-inflammatory activity of TMYX in the treatment of CHD via clinical trial, microarray study, bioinformatics analysis and the vitro assays.
Eight CHD patients' serum biochemical indices including coagulation function, lipid metabolism, endothelial injury, metalloprotease, adhesion molecule, inflammatory mediator and homocysteine were measured to investigate the reduction of CHD risk by TMYX oral administration (40 pills/time, 2 times/day) for eight weeks. The expression profile chips and Ingenuity Pathway Analysis (IPA) were assessed to reveal the global transcriptional response and predict related functions, diseases and canonical pathways. The in vitro anti-inflammatory actions of TMYX were evaluated using oxidized low-density lipoprotein (100 μg/mL) induced murine RAW264.7 macrophage with an ethanol extract from TMYX (EETMYX) (25-100 μg/mL).
TMYX treatment showed reduced levels of apolipoprotein B, endothelin 1, nuclear factor κB (NF-κB) and homocysteine in CHD patients. In contrast, the treatment increased the ratio of apolipoprotein A/apolipoprotein B. EETMYX restored cell morphology and suppressed the lipid deposition of the induced foam cells. EETMYX exerted anti-inflammatory effects by raising the mRNA and protein expression of Estrogen receptor 1 (ESR1), blocking the reduction of IκBa level and the phosphorylation of IKKα/β, IκBα and NF-κB p65, accompanied by inhibiting MCP-1, TNF-α and IL-6 production, which were consistent with bioinformatics predictions.
TMYX treatment improved the biochemical indices in CHD patients. EETMYX effectively attenuated macrophage foam cell formation and exhibited anti-inflammatory activity is associated with regulating ESR1 and NF-κB signaling pathway activity.
Fan Y
,Liu J
,Miao J
,Zhang X
,Yan Y
,Bai L
,Chang J
,Wang Y
,Wang L
,Bian Y
,Zhou H
... -
《-》
-
Clinical metabolomics analysis of therapeutic mechanism of Tongmai Yangxin Pill on stable angina.
Tongmai Yangxin Pill (TMYX) is a traditional Chinese medicine for the treatment of angina and arrhythmia. Although its clinical application is extensive, and the curative effect is significant, little information is available on the molecular biological basis and therapeutic mechanism of TMYX for the treatment of stable angina. In this study, we analyzed serum samples of clinical patients collected from seven different clinical units in China after oral administration of TMYX using ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS). Multiple statistical analysis including principal component analysis (PCA) and partial least square discrimination analysis (PLS-DA), were used to examine metabolite profile changes in serum samples. After TMYX treatment, 10 biomarkers were reversed to the normal conditions. The above biomarkers were mainly involved in energy metabolism, amino acid metabolism, oxidative stress and inflammation. These results suggested that TMYX exerted therapeutic effects by improving myocardial energy supply disorder and amino acid dysfunction, and attenuating oxidative stress and inflammation. The present study, as the first multicenter clinical study which reveals the molecular biological basis and therapeutic mechanism of TMYX on stable angina, can provide objective indicators for efficacy evaluation of TMYX on stable angina. And it also lays a foundation for the use of TMYX clinically.
Cai X
,Du J
,Li L
,Zhang P
,Zhou H
,Tan X
,Li Y
,Yu C
... -
《-》